所以A點的坐標為.直線的斜率為4. 查看更多

 

題目列表(包括答案和解析)

(理)設斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標原點,假設k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結論,并證明你的結論.
(3)分析(2)中的探究結果,并作出進一步概括,使上述結果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數學問題,并予以解決.

查看答案和解析>>

在直角坐標系xOy中,一直角三角形ABC,∠ C=90°,B、C在x軸上且關于原點O對稱,D在邊BC上,BD=3DC,△ABC的周長為12.若一雙曲線E以B、C為焦點,且經過A、D兩點.

(Ⅰ)求雙曲線E的方程;

(Ⅱ)若過一點P(m,0)(m為常數)的斜率存在的直線l與雙曲線E交于不同于雙曲線頂點的兩點M、N,且,問在x軸上是否存在定點G,使?若存在,求出所有這樣的定點G的坐標;若不存在,請說明理由.

查看答案和解析>>

(理)設斜率為k1的直線L交橢圓C:于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標原點,假設k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
(a>b>0),其它條件不變,試猜想k1與k2關系(不需要證明).請你給出在雙曲線(a>0,b>0)中相類似的結論,并證明你的結論.
(3)分析(2)中的探究結果,并作出進一步概括,使上述結果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數學問題,并予以解決.

查看答案和解析>>

(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.

(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?

 

查看答案和解析>>

(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视