題目列表(包括答案和解析)
為了解某班關注NBA是否與性別有關,對本班48人進行了問卷調查得到如下的列聯表:
| 關注NBA | 不關注NBA | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
K | 2.706 | 3.841 | 60635 | 7.879 |
為了解某班關注NBA是否與性別有關,對本班48人進行了問卷調查得到如下的列聯表:
| 關注NBA | 不關注NBA | 合計 |
男生 |
| 6 |
|
女生 | 10 |
|
|
合計 |
|
| 48 |
已知在全班48人中隨機抽取1人,抽到關注NBA的學生的概率為.
(1)請將上面的表補充完整(不用寫計算過程),并判斷是否有95%的把握認為關注NBA與性別有關?說明你的理由.
(2)現記不關注NBA的6名男生中某兩人為a,b,關注NBA的10名女生中某3人為c,d,e,從這5人中選取2人進行調查,求:至少有一人不關注NBA的被選取的概率。
下面的臨界值表,供參考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
K | 2.706 | 3.841 | 60635 | 7.879 |
(參考公式:)其中n=a+b+c+d
(12分)已知函數,k*s*5u
(1)若函數的圖像在
點處的切線與直線
平行,且在
處取得極值,求
的解析式,并確定
的單調遞減區間。
(2)若時,函數
在
上是減函數,求b的取值范圍。
已知函數,
,k為非零實數.
(Ⅰ)設t=k2,若函數f(x),g(x)在區間(0,+∞)上單調性相同,求k的取值范圍;
(Ⅱ)是否存在正實數k,都能找到t∈[1,2],使得關于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數根,且在[-5,-1]上至多有一個實數根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運用導數來研究函數的單調性,并求解參數的取值范圍。與此同時還能對于方程解的問題,轉化為圖像與圖像的交點問題來長處理的數學思想的運用。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com