②若兩圓內切: .則 查看更多

 

題目列表(包括答案和解析)

已知△ABC的內角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是
①④⑤
①④⑤
(注:把你認為是正確的序號都填上).

查看答案和解析>>

已知△ABC的內角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是______(注:把你認為是正確的序號都填上).

查看答案和解析>>

已知△ABC的內角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于;③在△ABC中,若c=5,,則△ABC的內切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線;⑤設三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應的三邊,則的取值范圍是.其中正確說法的序號是    (注:把你認為是正確的序號都填上).

查看答案和解析>>

(1)若三角形的內切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=
12
r(a+b+c),根據類比思想,若四面體的內切球半徑為R,四個面的面積分別為S1,S2,S3,S4,則此四面體的體積V=
 

(2)在平面幾何里有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側面面積與底面面積之間的關系,可以得出的正確結論是:“設三棱錐A-BCD的三側面ABC,ACD,ADB兩兩垂直,則
 
.”

查看答案和解析>>

(1)若三角形的內切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=數學公式r(a+b+c),根據類比思想,若四面體的內切球半徑為R,四個面的面積分別為S1,S2,S3,S4,則此四面體的體積V=________.
(2)在平面幾何里有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側面面積與底面面積之間的關系,可以得出的正確結論是:“設三棱錐A-BCD的三側面ABC,ACD,ADB兩兩垂直,則 ________.”

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视