題目列表(包括答案和解析)
下列函數中,即是偶數又在(0,+∞)單調遞增的函數是
y=x3
y=|x|+1
y=-x2+1
y=2-|x|
已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.
(1)求函數f(x)的表達式;
(2)若數列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
|
解析:設圓錐母線長為R,底面圓的半徑為r,則r=Rsin.又底面周長l=2πr
=Rα,即2πRsin
=Rα,∴α=2πsin
.
∵<θ<
,∴
<sin
<
,∴π<α<
π.
答案:D
已知{an}是各項均為正數的等差數列,lga1、lga2、lga4成等差數列,又,n=1,2,3,….
(1)證明:{bn}為等比數列.
(2)如果無窮等比數列{bn}各項的和S=,求數列{an}的首項a1和公差d.
(注:無窮數列各項的和即當n→∞時數列前n項和的極限)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com