題目列表(包括答案和解析)
等軸雙曲線的中心在原點,焦點在
軸上,
與拋物線
的準線交于
兩點,
;則
的實軸長為( )
【解析】設等軸雙曲線方程為,拋物線的準線為
,由
,則
,把坐標
代入雙曲線方程得
,所以雙曲線方程為
,即
,所以
,所以實軸長
,選C.
年齡(歲) | 30 35 40 45 50 55 60 65 |
收縮壓(水銀柱:毫米) | 110 115 120 125 130 135 (_____) 145 |
舒張壓(水銀柱:毫米) | 70 73 75 78 80 83 (______) 88 |
A.136,86 B.141,
已知函數f(x)=sin(ωx+φ)
(0<φ<π,ω>0)過點
,函數y=f(x)圖象的兩相鄰對稱軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個單位后,得到函數y=g(x)的圖象,求函數g(x)的單調遞減區間.
【解析】本試題主要考查了三角函數的圖像和性質的運用,第一問中利用函數y=f(x)圖象的兩相鄰對稱軸間的距離為.得
,
所以
第二問中,,
可以得到單調區間。
解:(Ⅰ)由題意得,
,…………………1分
代入點
,得
…………1分
,
∴
(Ⅱ),
的單調遞減區間為
,
.
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知中心在原點,焦點在軸上的橢圓
的離心率為
,且經過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓的方程為
,由題意得
解得
第二問若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以
所以.解得。
解:⑴設橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以
所以.
又,
因為,即
,
所以.
即.
所以,解得
.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com