17.甲.乙.丙3人積壓自進行1次實驗.一次實驗各自成功的概率分別是0.4,0.5,0.6 (Ⅰ)求3個人各自進行1次實驗都沒有成功的概率, (Ⅱ)求甲獨立進行3次實驗至少有兩次成功的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

       甲、乙、丙三臺機床各自獨立的加工同一種零件,已知甲、乙、丙三臺機床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機床加工的零件數相等,甲機床加工的零件數是乙機床加工的零件的二倍。

   (1)從甲、乙、丙加工的零件中各取一件檢驗,示至少有一件一等品的概率;

   (2)將三臺機床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;

   (3)將三臺機床加工的零件混合到一起,從中任意的抽取4件檢驗,其中一等品的個數記為X,求EX。

查看答案和解析>>

(本小題滿分12分)

       甲、乙、丙三臺機床各自獨立的加工同一種零件,已知甲、乙、丙三臺機床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機床加工的零件數相等,甲機床加工的零件數是乙機床加工的零件的二倍。

   (1)從甲、乙、丙加工的零件中各取一件檢驗,示至少有一件一等品的概率;

   (2)將三臺機床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;

   (3)將三臺機床加工的零件混合到一起,從中任意的抽取4件檢驗,其中一等品的個數記為X,求EX。

 

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人按下面的規則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規則一直進行到其中一人連勝兩局或打滿6局時停止.設在每局中參賽者勝負的概率均為,且各局勝負相互獨立.求:

(1)打了兩局就停止比賽的概率;

(2)打滿3局比賽還未停止的概率;

(3)比賽停止時已打局數的分布列與期望.

 

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人進行象棋比賽,每兩人比賽一場,共賽三場。每場比賽勝者得3分,負者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。

(1)求甲獲第一名且丙獲第二名的概率;

(2)設在該次比賽中,甲得分為ξ,求ξ的分布列和數學期望。

查看答案和解析>>

(本小題滿分12分)

甲、乙、丙三人進行象棋比賽,每兩人比賽一場,共賽三場。每場比賽勝者得3分,負者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。

(1)求甲獲第一名且丙獲第二名的概率;

(2)設在該次比賽中,甲得分為ξ,求ξ的分布列和數學期望。

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17.文 解:

   (Ⅰ)3人各自進行1次實驗都沒有成功的概率

…………………………6分

   (Ⅱ)甲獨立進行3次實驗至少有兩次成功的概率

…………………………12分

17.理 解:(注:考試中計算此題可以使用分數,以下的解答用的是小數)

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數學期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=np=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=npq=3×0.4×0.6=0.72)

18.文 解:

   (Ⅰ)設數列

所以……………………3分

所以…………………………6分

   (Ⅱ)………………9分

………………12分

18.理 解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點P,連PM、PN,則PN//AD,

 

 

 

 

 

 

 

 

 

 

   (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

         顯然

利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

cos∠A1OA=.

所以二面角的大小為arccos……………………………………………12分

(20?文)同19理.

(20?理)(I)證明:當q>0時,由a1>0,知an>0,所以Sn>0;………………2分

當-1<q<0時,因為a1>0,1-q>0,1-qn>0,所以.

綜上,當q>-1且q≠0時,Sn>0總成立.……………………5分

   (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

        Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

        依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

        ∵Sn>0,∴可得q-kq2>k,

即k(1+q2)<q,k<.

∴k的取值范圍是. ……………………12分

(21?文)解:f′(x)=3x2+4ax-b.………………………………2分

         設f′(x)=0的二根為x1,x2,由已知得

         x1=-1,x2≥2,………………………………………………4分

         …………………………7分

        解得

        故a的取值范圍是…………………………………………12分

(21?理)解:(I)設橢圓方程

        由2c=4得c=2,又.

        故a=3,b2=a2-c2=5,

        ∴所求的橢圓方程.…………………………………………5分

   (II)點F的坐標為(0,2),設直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

得(9+5k2)x2+20kx-25=0,………………………………8分

顯然△>0成立,

根據韋達定理得

,                       ①

.                           ②

,

,代入①、②得

                                     ③

                                    ④

由③、④得

 …………………………………………14分

(22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

(22.理)(1)證明:令

原不等式…………………………2分

,

單調遞增,,

………………………………………………5分

,

單調遞增,,

 …………………………………………8分

………………………………9分

   (Ⅱ)令,上式也成立

將各式相加

……………11分

……………………………………………………………………14分

 

 

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视