題目列表(包括答案和解析)
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
5 | 9 |
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對等式兩邊求導,得
取,則
得到結論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當時,
;
當時,
;
猜想:當時,
運用數學歸納法證明即可。
解:⑴取,則
;
…………1分
對等式兩邊求導,得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當時,
;
當時,
;
當時,
;
…………6分
猜想:當時,
,下面用數學歸納法證明:
由上述過程可知,時結論成立,
假設當時結論成立,即
,
當時,
而
∴
即時結論也成立,
∴當時,
成立。
…………11分
綜上得,當時,
;
當時,
;
當時,
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為
、
,拋物線
的準線與
軸交于
,橢圓
與拋物線
的一個交點為
.
(1)當時,求橢圓
的方程;
(2)在(1)的條件下,直線過焦點
,與拋物線
交于
兩點,若弦長
等于
的周長,求直線
的方程;
(3)由拋物線弧和橢圓弧
()合成的曲線叫“拋橢圓”,是否存在以原點
為直角頂點,另兩個頂點
落在“拋橢圓”上的等腰直角三角形
,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
已知函數f(x)=,
為常數。
(I)當=1時,求f(x)的單調區間;
(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。
【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是
然后求導,
,得到由
,得0<x<1;由
,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則
或
在區間[1,2]上恒成立,即即
,或
在區間[1,2]上恒成立,解得a的范圍。
(1)當a=1時,f(x)=,則f(x)的定義域是
。
由,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函數,在(1,上是減函數!6分
(2)。若函數f(x)在區間[1,2]上為單調函數,
則或
在區間[1,2]上恒成立!
,或
在區間[1,2]上恒成立。即
,或
在區間[1,2]上恒成立。
又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=
,h(x)min=h(1)=3
即,或
。 ∴
,或
。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com