(3)設, 判斷能否小于0 ? 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=-x2+4,設函數
(1)求F(x)表達式;
(2)解不等式1≤F(x)≤2;
(3)設mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

已知函數f(x)=-x2+4,設函數F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表達式;
(2)解不等式1≤F(x)≤2;
(3)設mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

已知函數f(x)=-x2+4,設函數F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表達式;
(2)解不等式1≤F(x)≤2;
(3)設mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

(理)設A={x|x≠kπ+,k∈Z},已知a=(2cos,sin),b=(cos,3sin),其中α、β∈A,

(1)若α+β=,且a=2b,求α,β的值;

(2)若a·b=,求tanαtanβ的值.

(文)已知函數f(x)=-x2+4,設函數F(x)=

(1)求F(x)的表達式;

(2)解不等式1≤F(x)≤2;

(3)設mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

(2010四川理數)(20)(本小題滿分12分)

已知定點A(-1,0),F(2,0),定直線lx,不在x軸上的動點P與點F的距離是它到直線l的距離的2倍.設點P的軌跡為E,過點F的直線交EB、C兩點,直線AB、AC分別交l于點M、N

(Ⅰ)求E的方程;

(Ⅱ)試判斷以線段MN為直徑的圓是否過點F,并說明理由.【來源:全,品…中&高*考+網】

本小題主要考察直線、軌跡方程、雙曲線等基礎知識,考察平面機襲擊和的思想方法及推理運算能力.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视