題目列表(包括答案和解析)
已知基本不等式:≥
(a、b都是正實數,當且僅當a=b時等號成立)可以推廣到n個正實數的情況,即對于n個正實數a1,a2,a3,…,an,有
≥
(當且僅當a1=a2=a3=…=an時,取等號).
同理,當a、b都是正實數時,(a+b)(+
)≥2ab·2
·
=4,可以推導出結論:對于n個正實數a1,a2,a3,…,an有(a1+a2+a3)(
+
+
)≥________;(a1+a2+a3+a4)(
+
+
+
)≥________;(a1+a2+a3+…+an)(
+
+
+…
)≥________;
如果對于n個同號實數a1,a2,a3,…,an(同正或者同負),那么,根據上述結論,(a1+a2+a3+…+an)(+
+
+…
)的取值范圍是________.
已知命題及其證明:
(1)當時,左邊=1,右邊=
所以等式成立;
(2)假設時等式成立,即
成立,
則當時,
,所以
時等式也成立。
由(1)(2)知,對任意的正整數n等式都成立。
經判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
α |
β |
α |
β |
α |
β |
α |
β |
x |
y |
x+y |
A.過程全部正確 | B.![]() |
C.歸納假設不正確 | D.從![]() ![]() |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com