題目列表(包括答案和解析)
(本小題滿分12分)
已知函數
(1)討論當a > 0時,函數的單調性;
(2)若曲線上兩點A、B處的切線都與y軸垂直,且線段AB與x軸有
公共點,求實數a的取值范圍.
已知函數f(x)=ax3+x2-x (a∈R且a≠0)
(1)若函數f(x)在(2,+∞)上存在單調遞增區間,求a的取值范圍.
(2)證明:當a>0時,函數在f(x)在區間()上不存在零點
已知.
(1)求的單調區間;
(2)證明:當時,
恒成立;
(3)任取兩個不相等的正數,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當k0時,
>0,所以函數g(x)的增區間為(0,+
),無減區間;
當k>0時,>0,得x>k;
<0,得0<x<k∴增區間(k,+
)減區間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-(x
1)
=
=
0,當且僅當x=1時,
=0所以G(x) 為減函數, 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當x
1時, 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴lnx0 –lnx>0, ∴x0 >x
設的定義域是
,且
對任意不為零的實數x都滿足
=
.已知當x>0時
(1)求當x<0時,的解析式 (2)解不等式
.
已知函數y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數,當x>0時,f(x)有最小值2,其中b∈N且f(1)<
(1)試求函數f(x)的解析式;
(2)問函數f(x)圖象上是否存在關于點(1,0)對稱的兩點,若存在,求出點的坐標;若不存在,說明理由。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com