題目列表(包括答案和解析)
要證,只需證
,即需
,即需證
,即證35>11,因為35>11顯然成立,所以原不等式成立。以上證明運用了
A.比較法 B.綜合法 C.分析法 D.反證法
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分。已知數列是各項均不為
的等差數列,公差為
,
為其前
項和,且滿足
,
.數列
滿足
,
為數列
的前n項和.
(1)求、
和
;
(2)若對任意的,不等式
恒成立,求實數
的取值范圍
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點
的坐標為
,點
的坐標為
,其中
且
.設
.
(1)若,
,
,求方程
在區間
內的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當
時,設函數
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數
的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量
、
和
的值. 當
時,試寫出一個條件,使得函數
滿足“圖像關于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)
(本小題滿分8分)已知命題函數
在區間
上是單調遞增函數;命題
不等式
對任意實數
恒成立.若
是真命題,求實數
的取值范圍.
設,
,
其中
是不等于零的常數,
(1)、(理)寫出的定義域(2分);
(文)時,直接寫出
的值域(4分)
(2)、(文、理)求的單調遞增區間(理5分,文8分);
(3)、已知函數,定義:
,
.其中,
表示函數
在
上的最小值,
表示函數
在
上的最大值.例如:
,
,則
,
,
(理)當時,設
,不等式
恒成立,求的取值范圍(11分);
(文)當時,
恒成立,求
的取值范圍(8分);
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com