.∴求證成立評注:導數是研究函數的工具.導數進入新教材之后.給函數問題注入了生機和活力.開辟了許多解題新途徑.拓展了高考對函數問題的命題空間.所以把導數與函數綜合在一起是順理成章的事情.對函數的命題已不再拘泥于一次函數.二次函數.反比例函數.指數函數.對數函數等.對研究函數的目標也不僅限于求定義域.值域.單調性.奇偶性.對稱性.周期性等.而是把高次多項式函數.分式函數.指數型.對數型函數.以及初等基本函數的和.差.積.商都成為命題的對象.試題的命制往往融函數.導數.不等式.方程等知識于一體.通過演繹證明.運算推理等理性思維.解決單調性.極值.最值.切線.方程的根.參數的范圍等問題.這類題難度很大.綜合性強.內容新.背景新.方法新.是高考命題的豐富寶藏.通過構造函數.以導數為工具.證明不等式.解題技巧是構造輔助函數.把不等式的證明轉化為利用導數研究函數的單調性或求最值.從而證得不等式.而如何根據不等式的結構特征構造一個可導函數是用導數證明不等式的關鍵. 查看更多

 

題目列表(包括答案和解析)

已知函數,,k為非零實數.

(Ⅰ)設t=k2,若函數f(x),g(x)在區間(0,+∞)上單調性相同,求k的取值范圍;

(Ⅱ)是否存在正實數k,都能找到t∈[1,2],使得關于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數根,且在[-5,-1]上至多有一個實數根.若存在,請求出所有k的值的集合;若不存在,請說明理由.

 

【解析】本試題考查了運用導數來研究函數的單調性,并求解參數的取值范圍。與此同時還能對于方程解的問題,轉化為圖像與圖像的交點問題來長處理的數學思想的運用。

 

查看答案和解析>>

已知函數,曲線在點x=1處的切線為,若時,有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導數的幾何意義的運用,以及運用導數在研究函數的極值和最值的問題。體現了導數的工具性的作用。

 

查看答案和解析>>

已知函數,曲線在點x=1處的切線為,若時,有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導數的幾何意義的運用,以及運用導數在研究函數的極值和最值的問題。體現了導數的工具性的作用。

 

查看答案和解析>>

已知函數f(x)=為常數。

(I)當=1時,求f(x)的單調區間;

(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。

【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則在區間[1,2]上恒成立,即即,或在區間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數,在(1,上是減函數。……………6分

(2)。若函數f(x)在區間[1,2]上為單調函數,

在區間[1,2]上恒成立!,或在區間[1,2]上恒成立。即,或在區間[1,2]上恒成立。

又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

已知函數

(Ⅰ)若函數f(x)在[1,2]上是減函數,求實數a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實數a,當x∈(0,e](e是自然常數)時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當x∈(0,e]時,證明:

【解析】本試題主要是考查了導數在研究函數中的運用。第一問中利用函數f(x)在[1,2]上是減函數,的導函數恒小于等于零,然后分離參數求解得到a的取值范圍。第二問中,

假設存在實數a,使有最小值3,利用,對a分類討論,進行求解得到a的值。

第三問中,

因為,這樣利用單調性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

1.(共12 分)解:(I)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e ?6ec8aac122bd4f6e

6ec8aac122bd4f6e                                     2分

6ec8aac122bd4f6e                                                 4分

6ec8aac122bd4f6e= 6ec8aac122bd4f6e.                                                     5分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                               6分             

函數6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e.                                             7分

當且僅當6ec8aac122bd4f6e6ec8aac122bd4f6eZ)時,函數6ec8aac122bd4f6e取得最大值為6ec8aac122bd4f6e.

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6eZ),                          9分

6ec8aac122bd4f6e  (6ec8aac122bd4f6eZ).                                   11分

函數6ec8aac122bd4f6e的單調遞增區間為[6ec8aac122bd4f6e](6ec8aac122bd4f6eZ).                     12

2.解:(Ⅰ) 選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;    ……………1分

選手甲答6ec8aac122bd4f6e道題進入決賽的概率為6ec8aac122bd4f6e;…………………………3分

選手甲答5道題進入決賽的概率為6ec8aac122bd4f6e;   …………………5分

∴選手甲可進入決賽的概率6ec8aac122bd4f6e+6ec8aac122bd4f6e+6ec8aac122bd4f6e6ec8aac122bd4f6e.        …………………7分

   (Ⅱ)依題意,6ec8aac122bd4f6e的可能取值為6ec8aac122bd4f6e.則有6ec8aac122bd4f6e,               

6ec8aac122bd4f6e,       

6ec8aac122bd4f6e, …………………………10分

因此,有

ξ

3

4

5

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.          ……………………………12分

3.(共12分)解法一:

解:(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.-------------2分                 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內的射影.         --------3分                                            

6ec8aac122bd4f6e6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e6ec8aac122bd4f6e.            ----------4分

(Ⅱ) 由(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e為所求二面角的平面角.         -------6分

又∵6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=4,

6ec8aac122bd4f6e=4 .  ∵6ec8aac122bd4f6e=2 , ∴6ec8aac122bd4f6e=60°. -------8分

即二面角6ec8aac122bd4f6e大小為60°.

(Ⅲ)過6ec8aac122bd4f6e6ec8aac122bd4f6e于D,連結6ec8aac122bd4f6e,            

由(Ⅱ)得平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,且平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內的射影.

6ec8aac122bd4f6e. --------10分

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e =6ec8aac122bd4f6e.                       ------------11分                       

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的大小為6ec8aac122bd4f6e.         ----12分               

解法二:解:(Ⅰ)由已知6ec8aac122bd4f6e,

6ec8aac122bd4f6e點為原點,建立如圖所示的空間直角坐標系6ec8aac122bd4f6e.                             

6ec8aac122bd4f6e,6ec8aac122bd4f6e.            -------2分  

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e.     

6ec8aac122bd4f6e.       ----------------4分

   (Ⅱ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量. -------5分

設側面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

   6ec8aac122bd4f6e   6ec8aac122bd4f6e.令6ec8aac122bd4f6e6ec8aac122bd4f6e.

則得平面6ec8aac122bd4f6e的一個法向量6ec8aac122bd4f6e6ec8aac122bd4f6e.               ---------6分

6ec8aac122bd4f6e.       

即二面角6ec8aac122bd4f6e大小為60°.     ----------8分

(Ⅲ)由(II)可知6ec8aac122bd4f6e6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量.     --------10分

6ec8aac122bd4f6e, 6ec8aac122bd4f6e6ec8aac122bd4f6e.   -----11分                    

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角為6ec8aac122bd4f6e           ---------12分

4.解:(I)函數6ec8aac122bd4f6e

    當6ec8aac122bd4f6e  …………2分

    當x變化時,6ec8aac122bd4f6e的變化情況如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

+

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值

6ec8aac122bd4f6e

    由上表可知,函數6ec8aac122bd4f6e

    單調遞增區間是6ec8aac122bd4f6e

    極小值是6ec8aac122bd4f6e         …………6分

   (II)由6ec8aac122bd4f6e      …………7分

    又函數6ec8aac122bd4f6e為[1,4]上單調減函數,

    則6ec8aac122bd4f6e在[1,4]上恒成立,所以不等式6ec8aac122bd4f6e在[1,4]上恒成立.

    即6ec8aac122bd4f6e在[1,4]上恒成立.            …………10分

    又6ec8aac122bd4f6e在[1,4]為減函數,

    所以6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e                   …………12分

5.解:橢圓6ec8aac122bd4f6e的左、右焦點分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e ,         ……2分

6ec8aac122bd4f6e6ec8aac122bd4f6e  ,      6ec8aac122bd4f6e………3分

解得6ec8aac122bd4f6e,                   

6ec8aac122bd4f6e橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e .                       ………4分

   (Ⅱ)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設點6ec8aac122bd4f6e6ec8aac122bd4f6e的坐標分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e,則6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e

   (1)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e、6ec8aac122bd4f6e關于原點對稱,則6ec8aac122bd4f6e

   (2)當6ec8aac122bd4f6e時,點6ec8aac122bd4f6e、6ec8aac122bd4f6e不關于原點對稱,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,得6ec8aac122bd4f6e       即6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e在橢圓上,6ec8aac122bd4f6e6ec8aac122bd4f6e,

化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e.………………①         ……………7分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e.……………………………②    

將①、②兩式,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合(1)、(2)兩種情況,得實數6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e. ………………8分

(Ⅲ)6ec8aac122bd4f6e,點6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離6ec8aac122bd4f6e

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e6ec8aac122bd4f6e

                6ec8aac122bd4f6e.           ………………………… 10分

由①有6ec8aac122bd4f6e,代入上式并化簡,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e.                    ……………………… 11分

當且僅當6ec8aac122bd4f6e,即6ec8aac122bd4f6e時,等號成立.

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e的面積最大,最大值為6ec8aac122bd4f6e. ……………………… 12分

6.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………4分

(2)6ec8aac122bd4f6e的對稱軸垂直于x軸,且頂點為Pn,

∴設6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

=6ec8aac122bd4f6e…………………………8分

(3)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴S6ec8aac122bd4f6e中最大數a1=-17.…………………………10分

6ec8aac122bd4f6e公差為d,則a10=6ec8aac122bd4f6e

由此得6ec8aac122bd4f6e

又∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………12分

本資料來源于《七彩教育網》http://www.7caiedu.cn

2009屆新課標數學考點預測(26):函數與方程的思想方法

《2009年新課標考試大綱》明確指出“數學知識是指《普通高中數學課程標準(實驗)》中所規定的必修課程、選修課程系列2和系列4中的數學概念、性質、法則、公式、公理、定理以及由其內容反映的數學思想方法”。其中數學思想方法包括: 函數與方程的思想方法、 數形結合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉化與化歸的思想方法、 必然與或然的思想方法。數學思想方法是對數學知識內容和方法的本質認識,是對數學的規律性的理性認識。高考通過對數學思想方法的考查,能夠最有效地檢測學生對數學知識的理解和掌握程度,能夠最有效地反映出學生對數學各部分內容的銜接、綜合和滲透的能力。《考試大綱》對數學考查的要求是“數學學科的系統性和嚴密性決定了數學知識之間深刻的內在聯系,包括各部分知識的縱向聯系和橫向聯系,要善于從本質上抓住這些聯系,進而通過分類、梳理、綜合,構建數學試卷的框架結構” 。而數學思想方法起著重要橋梁連接和支稱作用,“對數學思想方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時必須要與數學知識相結合,通過數學知識的考查,反映考生對數學思想方法的掌握程度” ! 數學科的命題,在考查基礎知識的基礎上,注重對數學思想方法的考查,注重對數學能力的考查,展現數學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和現實性,重視試題間的層次性,合理調控綜合程度,堅持多角度、多層次的考查,努力實現全面考查綜合數學素養的要求。” 數學的思想方法滲透到數學的各個角落,無處不在,有些題目還要考查多個數學思想。在高考復習時,要充分認識數學思想在提高解題能力的重要性,在復習中要有意識地滲透這些數學思想,提升數學思想。

一、函數與方程的思想

所謂函數的思想,就是用運動和變化的觀點、集合對應的思想,去分析和研究數學問題中的數量關系,建立函數關系或構造函數。運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決,函數思想是對函數概念的本質認識,用于指導解題就是要善于利用函數知識或函數觀點去觀察分析處理問題。

所謂方程的思想就是分析數學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程(組),或者運用方程的性質去分析轉化問題使問題獲得解決,方程思想是對方程概念的本質認識,用于指導解題就是利用方程或方程觀點觀察處理問題。函數思想與方程思想是密不可分的,可以相互轉化的。

函數和方程的思想是最重要和最常用的數學思想,它貫穿于整個高中教學中,中學數學中的初等函數、三角函數、數列以及解析幾何都可以歸結為函數,尤其是導數的引入為函數的研究增添了新的工具.因此,在數學教學中注重函數與方程的思想是相當重要的.在高考中,函數與方程的思想也是作為思想方法的重點來考查的,使用選擇題和填空題考查函數與方程思想的基本運算,而在解答題中,則從更深的層次,在知識的網絡的交匯處,從思想方法與相關能力相綜合的角度進行深入考查。

1、利用函數與方程的性質解題

例1.(2008安徽卷,理,11)若函數6ec8aac122bd4f6e分別是6ec8aac122bd4f6e上的奇函數、偶函數,且滿足6ec8aac122bd4f6e,則有(    )

A.6ec8aac122bd4f6e                 B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e


同步練習冊答案
久久精品免费一区二区视