題目列表(包括答案和解析)
(本小題滿分14分)
已知中心在原點的雙曲線C的一個焦點是,一條漸近線的方程是
.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若以為斜率的直線
與雙曲線C相交于兩個不同的點M,N,線段MN的垂直平分線與兩坐標軸圍成的三角形的面積為
,求
的取值范圍.
(本小題滿分14分)
已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經過點(-1,
),過點P(2,1)的直線l與橢圓C在第一象限相切于點M.
(1)求橢圓C的方程;
(2)求直線l的方程以及點M的坐標;
(3)是否存在過點P的直線l與橢圓C相交于不同的兩點A,B,滿足
·
=
?若存在,求出直線l
的方程;若不存在,請說明理由.
(本小題滿分14分)已知中心在原點,焦點在軸上,離心率為
的橢圓過點(
,
).
(I)求橢圓方程
(II)設不過原點O的直線:
,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為
、
,滿足
,求
的值.
(本小題滿分14分)
已知中心在原點的雙曲線C的一個焦點是,一條漸近線的方程是
.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若以為斜率的直線
與雙曲線C相交于兩個不同的點M,N,線段MN的垂直平分線與兩坐標軸圍成的三角形的面積為
,求
的取值范圍.
(本小題滿分14分)已知中心在原點的雙曲線C的右焦點為(2, 0),實軸長為.
(Ⅰ)求雙曲線C的方程;()
(Ⅱ)若直線l:與雙曲線C的左支交于A、B兩個不同點,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,線段AB的垂直平分線l0與y軸交于M(0,b),求b的取值范圍.
一、選擇題(每題5分共50分)
1.D 2.A 3.B 4.C 5.C
6.C 7.B 8.C 9.C 10.D
二、填空題(每題5分共20分)
11. 12.
13.
14.(0,2), 15.3
三、解答題(共80分)
16.解:(Ⅰ)由已知得:,
又是△ABC的內角,所以
.
(2)由正弦定理:,
又因為,
,又
是△ABC的內角,所以
.
17.證明:連結AB,A1D,在正方形中,A1B=A1D,O是BD中點,
∴A1O⊥BD;
連結OM,Aa=MC1
OA=OC=a,AC=
a,
∴A1O2=Aa2=
a2,OM2=OC2+MC2=
a2,A
a2=
a2,∴A
∴A1O⊥OM,
∴AO1⊥平面MBD
18解:(Ⅰ),
因為函數在
及
取得極值,則有
,
.
即
解得,
.
(Ⅱ)由(Ⅰ)可知,,
.
當時,
;
當時,
;
當時,
.
所以,當時,
取得極大值
,又
,
.
則當時,
的最大值為
.
因為對于任意的,有
恒成立,
所以 ,
解得 或
,
因此的取值范圍為
.
19.解(Ⅰ)由題意知,
當n≥2時,,
,
兩式相減得
整理得:
∴數列{}是以2為首項,2為公比的等比數列。
∴
(Ⅱ)由(Ⅰ)知,∴bn=n
, …………①
, …………②
①-②得
,
∴,
∴,
20.解:設這臺機器最佳使用年限是n年,則n年的保養、維修、更換易損零件的總費用為:
,
等號當且僅當
答:這臺機器最佳使用年限是12年,年平均費用的最小值為1.55萬元.
21.⑴c=2, a=3 雙曲線的方程為
⑵ 得 (1?3k2)x2?6kx?9=0
x1+x2= , x1x2=
由△>0 得 k2<1
由= x1x2+y1y2=(1+k2) x1x2+k(x1+x2)+2>2得 <k2<3
所以,<k2<1
即k∈(?1, )∪( , 1 )
附加題
(1)證明:先將變形:
,
當,即
時,∴
恒成立,
故的定義域為
。
反之,若對所有實數
都有意義,則只須
。
令,即
,解得
,故
。
(2)解析:設,
∵是增函數,
∴當最小時,
最小。
而,
顯然,當時,
取最小值為
,
此時為最小值。
(3)證明:當時,
,
當且僅當m=2時等號成立。
∴。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com