題目列表(包括答案和解析)
10-x |
10+x |
10-x |
10+x |
仔細閱讀下面問題的解法:
設A=[0, 1],若不等式21-x-a>0在A上有解,求實數a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2. ∴實數a的取值范圍為a<2.
研究學習以上問題的解法,請解決下面的問題:
(1)已知函數f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數a的取值范圍。
10-x |
10+x |
10-x |
10+x |
如圖,在正四棱錐中,
.
(1)求該正四棱錐的體積;
(2)設為側棱
的中點,求異面直線
與
所成角的大小.
【解析】第一問利用設為底面正方形
中心,則
為該正四棱錐的高由已知,可求得
,
所以,
第二問設為
中點,連結
、
,
可求得,
,
,
在中,由余弦定理,得
.
所以,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com