所以函數在上的單調增區間為和 查看更多

 

題目列表(包括答案和解析)

設函數

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數在區間上是增函數,求實數的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了在區間導數恒大于等于零,分離參數求解范圍的思想。

解:(1)當……2分

   

為所求切線方程!4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數的取值范圍是

 

查看答案和解析>>

已知函數,(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數在區間[k,2]上的最大值為28,求k的取值范圍

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)當時,,,

,則,令,為單調遞增區間,為單調遞減區間,其中F(-3)=28為極大值,所以如果區間[k,2]最大值為28,即區間包含極大值點,所以

【考點定位】此題應該說是導數題目中較為常規的類型題目,考查的切線,單調性,極值以及最值問題都是課本中要求的重點內容,也是學生掌握比較好的知識點,在題目中能夠發現F(-3)=28,和分析出區間[k,2]包含極大值點,比較重要

 

查看答案和解析>>

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即 {x}=m.在此基礎上有函數f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)對于函數f(x),現給出如下一些判斷:
①函數y=f(x)是偶函數;
②函數y=f(x)是周期函數;
③函數y=f(x)在區間(-
1
2
,
1
2
]
上單調遞增;
④函數y=f(x)的圖象關于直線x=k+
1
2
 &(k∈Z)
對稱;
請你將以上四個判斷中正確的結論全部選擇出來,并選擇其中一個加以證明;
(3)若-206<x≤207,試求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即 {x}=m.在此基礎上有函數f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)對于函數f(x),現給出如下一些判斷:
①函數y=f(x)是偶函數;
②函數y=f(x)是周期函數;
③函數y=f(x)在區間(-
1
2
,
1
2
]
上單調遞增;
④函數y=f(x)的圖象關于直線x=k+
1
2
 &(k∈Z)
對稱;
請你將以上四個判斷中正確的結論全部選擇出來,并選擇其中一個加以證明;
(3)若-206<x≤207,試求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設弧   的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關于函數y=f(x)的有如下結論:
①函數y=f(x)的定義域和值域都是[0,π];
②如果函數y=f(x)的定義域R,則函數y=f(x)是周期函數;
③如果函數y=f(x)的定義域R,則函數y=f(x)是奇函數;
④函數y=f(x)在區間[0,π]是單調遞增函數.
以上結論的正確個數是( )

A.1
B.2
C.3
D.4

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视