所以在上成立.即為上單調遞增函數. 查看更多

 

題目列表(包括答案和解析)

已知函數的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當

從而,

所以因為函數在區間上的圖像是連續不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>

設函數

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數在區間上是增函數,求實數的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了在區間導數恒大于等于零,分離參數求解范圍的思想。

解:(1)當……2分

   

為所求切線方程!4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數的取值范圍是

 

查看答案和解析>>

已知函數.(

(1)若在區間上單調遞增,求實數的取值范圍;

(2)若在區間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區間上單調遞增,則在區間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.然后求解得到。

解:(1)在區間上單調遞增,

在區間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區間上是增函數,并且在該區間上有,不合題意;

,即時,同理可知,在區間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區間上恒有,從而在區間上是減函數;

要使在此區間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

如圖,,,…,,…是曲線上的點,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出、之間的等量關系,以及、之間的等量關系;

(2)求證:);

(3)設,對所有,恒成立,求實數的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及

第三問 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视