題目列表(包括答案和解析)
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
(本小題滿分14分)
已知函數對于任意
(
),都有式子
成立(其中
為常數).
(Ⅰ)求函數的解析式;
(Ⅱ)利用函數構造一個數列,方法如下:
對于給定的定義域中的,令
,
,…,
,…
在上述構造過程中,如果(
=1,2,3,…)在定義域中,那么構造數列的過程繼續下去;如果
不在定義域中,那么構造數列的過程就停止.
(。┤绻梢杂蒙鲜龇椒嬙斐鲆粋常數列,求的取值范圍;
(ⅱ)是否存在一個實數,使得取定義域中的任一值作為
,都可用上述方法構造出一個無窮數列
?若存在,求出
的值;若不存在,請說明理由;
(ⅲ)當時,若
,求數列
的通項公式.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com