若數列是“M類數列 . 則存在實常數 查看更多

 

題目列表(包括答案和解析)

對于給定數列{cn},如果存在實常數p,q使得cn+1pcnq對于任意nN+都成立,我們稱數列{cn}是“M類數列”.

(1)an2n,bn3·2nnN+,數列{an}{bn}是否為“M類數列”?若是,指出它對應的實常數p,q;若不是,請說明理由;

(2)求證:若數列{an}是“M類數列”,則數列{anan+1}也是“M類數列”.

查看答案和解析>>

(I)給定數列{cn},如果存在實常數p,q,使得cn+1=pcn+q對于任意n∈N*都成立,則稱數列{cn}是“M類數列”.
(i)若數學公式,數列{an}是否為“M類數列”?若是,指出它對應的實常數p,q,若不是,請說明理由;
(ii)若數列{bn}的前n項和為數學公式是“M類數列”.
(Ⅱ)若數列數學公式前2013項的和.

查看答案和解析>>

(I)給定數列{cn},如果存在實常數p,q,使得cn+1=pcn+q對于任意n∈N*都成立,則稱數列{cn}是“M類數列”.
(i)若,數列{an}是否為“M類數列”?若是,指出它對應的實常數p,q,若不是,請說明理由;
(ii)若數列{bn}的前n項和為是“M類數列”.
(Ⅱ)若數列前2013項的和.

查看答案和解析>>

(I)給定數列{cn},如果存在實常數p,q,使得cn+1=pcn+q對于任意n∈N*都成立,則稱數列{cn}是“M類數列”.
(i)若,數列{an}是否為“M類數列”?若是,指出它對應的實常數p,q,若不是,請說明理由;
(ii)若數列{bn}的前n項和為是“M類數列”.
(Ⅱ)若數列前2013項的和.

查看答案和解析>>

(I)給定數列{cn},如果存在實常數p,q,使得cn+1=pcn+q對于任意n∈N*都成立,則稱數列{cn}是“M類數列”.
(i)若,數列{an}是否為“M類數列”?若是,指出它對應的實常數p,q,若不是,請說明理由;
(ii)若數列{bn}的前n項和為是“M類數列”.
(Ⅱ)若數列前2013項的和.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视