題目列表(包括答案和解析)
當函數取得最大值時,x=___________.
【解析】函數為,當
時,
,由三角函數圖象可知,當
,即
時取得最大值,所以
.
當函數取得最大值時,
___________.
【解析】函數為,當
時,
,由三角函數圖象可知,當
,即
時取得最大值,所以
.
設,
.
(1)當時,求曲線
在
處的切線方程;
(2)如果存在,使得
成立,求滿足上述條件的最大整數
;
(3)如果對任意的,都有
成立,求實數
的取值范圍.
【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,
轉化
解決;(3)任意的
,都有
成立即
恒成立,等價于
恒成立
已知函數在
與
時都取得極值.
(1)求的值及函數
的單調區間;www.7caiedu.cn
(2)若對,不等式
恒成立,求
的取值范圍.
【解析】根據與
是
的兩個根,可求出a,b的值,然后利用導數確定其單調區間即可.
(2)此題本質是利用導數其函數f(x)在區間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.
已知R
.
(1)求函數的最大值,并指出此時
的值.
(2)若,求
的值.
【解析】本試題主要考查了三角函數的性質的運用。(1)中,三角函數先化簡=
,然后利用
是,函數取得最大值
(2)中,結合(1)中的結論,然后由
得,兩邊平方得
即
,因此
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com