22.某小組有6個同學.其中4個同學從來沒有參加過數學研究性學習活動.2個同學曾經參加過數學研究性學習活動. (1)現從該小組中任選2個同學參加數學研究性學習活動.求恰好選到1個曾經參加過數學研究性學習活動的同學的概率, 查看更多

 

題目列表(包括答案和解析)

某小組共有8名同學,其中男生6人,女生2人,現從中按性別分層隨機抽4個參加一項公益活動,則不同的抽取方法共有

[  ]

A.40種

B.70種

C.80種

D.240種

查看答案和解析>>

高三某班有甲、乙兩個學習小組,每組都有10名同學,其中甲組有4名女同學和6名男同學;乙組有6名女同學和4名男同學.現采用分層抽樣分別從甲、乙兩組中各抽2名同學進行學習情況調查.求:

(1)從甲組抽取的同學中恰有1名女同學的概率;

(2)抽取的4名同學中恰有2名男同學的概率.

查看答案和解析>>

高三某班有甲、乙兩個學習小組,每組都有10名同學,其中甲組有4名女同學;乙組有6名女同學,F采用分層抽樣從甲、乙兩組中共抽取4名同學進行學習情況調查。

   (1)求從甲、乙兩組各抽取的人數;

   (2)求從甲組抽取的同學中恰有1名女同學的概率;

   (3)求抽取的4名同學中恰有2名男同學的概率。

查看答案和解析>>

(2012•九江一模)某校高二年級興趣小組,為了分析2011年我國宏觀經濟形勢,上網查閱了2010年和2011年1-10月我國GPI同比(即當年某月與前一年同月相比)的增長數據(見下表),但今年4,5兩個月的數據(分別記為x,y)沒有查到.有的同學清楚記得今年3,4,5三個月的GPI數據的平均數是5.4,方差的3倍是0.02,且x<y.
附表:我國2010年和2011年前十月的GPI數據(單位:百分點)
年份 一月 二月 三月 四月 五月 六月 七月 八月 九月 十月
2010 1.5 2.7 2.4 2.8 3.1 2.9 3.3 3.5 3.6 4.4
2011 4.9 4.9 5.4 x y 6.4 6.5 6.2 6.1 5.5
注:1個百分點=1%
(1)求x,y的值;
(2)一般認為,某月GPI達到或超過3個百分點就已經通貨膨脹,而達到或超過5個百分點則嚴重通貨膨脹.現隨機地從2010年的十個月和2011年的十個月的數據中各抽取一個數據,求相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率.
注:方差計算公式:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+L+(xn-
.
x
2)],其中:
.
x
=
x1+x2+Lxn
n

查看答案和解析>>

某小組有6個同學,其中4個同學從來沒有參加過數學研究性學習活動,2個同學曾經參加過數學研究性學習活動.
(1)現從該小組中任選2個同學參加數學研究性學習活動,求恰好選到1個曾經參加過數學研究性學習活動的同學的概率;
(2)若從該小組中任選2個同學參加數學研究性學習活動,活動結束后,該小組沒有參加過數學研究性學習活動的同學個數ξ是一個隨機變量.求隨機變量ξ的分布列及數學期望E(ξ).

查看答案和解析>>

一:填空題

1、2;  2、x∈R,使x2+1<x;  3、π;  4、;  5、既不充分也不必要條件;

6、1+i;   7、;     8、5;     9、;    10、(-∞, -)∪(,+∞);

11、2或5;    12、9;  13、b1?b22?b33?…?bnn=;    14、;

二:解答題

15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)

∴(a?(b=cos(α-β) =cos=         …………………………………………5分

(2)∵………7分

α+β=2α-(α-β)= -(α-β)         ……………………………………9分

或7……………14分

16、證明:(1)令BC中點為N,BD中點為M,連結MN、EN

∵MN是△ABC的中位線

∴   MN∥CD       …………………………2分

由條件知AE∥CD ∴MN∥AE 又MN=CD=AE 

∴四邊形AEMN為平行四邊形

∴AN∥EM …………………………4分

∵AN面BED, EM面BED

∴AN∥面BED……………………6分

(2)   ∵AE⊥面ABC, AN面ABC

∴AE⊥AN  又∵AE∥CD,AN∥EM∴EM⊥CD………………8分

∵N為BC中點,AB=AC∴AN⊥BC

*∴EM⊥BC………………………………………………10分

∴EM⊥面BCD…………………………………………12分

∵EM面BED  ∴  面BED⊥面BCD  ……14分

17.解:(1)取弦的中點為M,連結OM

由平面幾何知識,OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………7分

(2)設弦的中點為M,連結OM

              ……………………………………10分

解得                       …………………………………………12分

……………………………15分

                  

18.(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=,  ∵S△APQ=,

    ∴…………………7分

(2)

          =?………………12分

    當,即……15分

19.解(1)證:       由  得

在C1上點處的切線為y-2e=2(x-e),即y=2x

又在C2上點處切線可計算得y-2e=2(x-e),即y=2x

∴直線l與C1、C2都相切,且切于同一點(e,2e)      …………………5分

(2)據題意:M(t, +e),N(t,2elnt),P(t,2t)

∵+e-2t=≥0,∴+e ≥2t

設h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;

當t∈(0,e)時h/(t)<0,h(t)單調遞減;且當t∈(e,+∞)時h/(t)>0,h(t)單調遞增;

∴t>0有h(t)≥h(e)=0  ∴2t≥2elnt

∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分

f(t)= +2e-4==≥0…………………7分

   ∴上遞增∴當………10分

(3)

設上式為 ,假設取正實數,則?

時,,遞減;

,遞增. ……………………………………12分

                 

    

∴不存在正整數,使得              …………………16分

20.解:(1),

,對一切恒成立

的最小值,又………………4分

(2)這5個數中成等比且公比的三數只能為

只能是,

      …………………………8分

,,

顯然成立             ……………………………………12分

時,

∴使成立的自然數n恰有4個正整數的p值為3……16分

三:理科附加題

21. A.解:(1)

   ∴AB=CD                          …………………………4分

(2)由相交弦定理得2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),,由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

D.證明:(1)因為

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.解:(1)記“恰好選到1個曾參加過數學研究性學習活動的同學”為事件的,

則其概率為                …………………………………………4分

    答:恰好選到1個曾經參加過數學研究性學習活動的同學的概率為

(2)隨機變量

P(ξ=2)= =; P(ξ=3)= =;………7分

2

3

4

P

  ∴隨機變量的分布列為

                    ………………10分

23.(1),,

,,………………3分

   (2)平面BDD1的一個法向量為,設平面BFC1的法向量為

得平面BFC1的一個法向量

∴所求的余弦值為                     ……………………………………6分

(3)設

,由

,時,時,∴   ……………10分

 

 

 

 


同步練習冊答案
久久精品免费一区二区视