當時等式成立 ----------------8分 查看更多

 

題目列表(包括答案和解析)

已知函數

(Ⅰ)求函數的單調區間;

(Ⅱ)設,若對任意,,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,;

時,

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,,,求方程在區間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.
(1)若,,,求方程在區間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,,求方程在區間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

 

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.
(1)若,,,求方程在區間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视