故:.. 查看更多

 

題目列表(包括答案和解析)

:. 甲、乙兩個水平相當的選手在決賽中相遇,決定采用五局三勝制,當比賽進行到甲對乙的比分為2︰1時,因故比賽停止,乙要求比賽獎金甲與乙按2︰1的比例分發;你認為這種分發方案合理嗎?請說明理由。若不合理,應怎樣分發?

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側面AC1
精英家教網
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數.
注意:在下面橫線上填寫適當內容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網
(1)證明:在截面A1EC內,過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側面AC1;取AC的中點F,連接BF,FG,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側面AC1;得BF∥EG,BF、EG確定一個平面,交側面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

命題“若,,,則.”可以如下證明:構造函數,則,因為對一切,恒有,所以,故得

試解決下列問題:

(1)若,,,,求證;

(2)試將上述命題推廣到n個實數,并證明你的結論.

查看答案和解析>>

如圖,長方體中,底面是正方形,的中點,是棱上任意一點。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長。

 【解析】(Ⅰ)因底面是正方形,故,又側棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設,由,即,解得,即 的長為。

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運用。

(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,FG⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,FG2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视