(1)求證:;⑵ 求的最大值及相應的值.學科網 查看更多

 

題目列表(包括答案和解析)

設函數f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),當x≠0時,xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數;
(2)試問:在-n≤x≤n時(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

設函數f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),當x≠0時,xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數;
(2)試問:在-2≤x≤2時,f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關于x的不等式
1
2
f(bx)-f(x)>
1
2
f(b2x)-f(b)

查看答案和解析>>

設f(x)=x2,g(x)=8x,數列{an}(n∈N*)滿足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,記bn=
78
(n+1)(an-1)
.(Ⅰ)求證:數列{an-1}是等比數列;
(Ⅱ)當n為何值時,bn取最大值,并求此最大值;(Ⅲ)求數列{bn}的前n項和Sn

查看答案和解析>>

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為
2
3
,最小值為-
1
2
,求證:|
b
a
|≤2

(2)當b=4,c=
3
4
時,對于給定的負數a,有一個最大的正數m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

查看答案和解析>>

已知α、β是銳角,α+β≠
π2
,且滿足3sinβ=sin(2α+β).
(1)求證:tan(α+β)=2tanα
(2)求tanβ的最大值,并求取得最大值時tanα的值.

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點,又中點。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵    (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴, 。

        ∴                (10分)

         

             (13分)

          (當時取“”)   

所以的最大值為,相應的    (14分)

17.解:⑴直線的斜率 ,中點坐標為

        ∴直線方程為     (4分)

        ⑵設圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當△面積為時 ,點到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個點使 △的面積為  .  (14分)

18[解] (1)乙方的實際年利潤為:  .   (5分)

時,取得最大值.

      所以乙方取得最大年利潤的年產量 (噸).…………………8分

 (2)設甲方凈收入為元,則

學科網(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當時,;當時,,所以時,取得最大值.

    因此甲方向乙方要求賠付價格 (元/噸)時,獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設存在正數,令 (9分)

   由得:  

   ∵當時, ,∴為減函數;

   當時,,∴ 為增函數.

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當時,

       ∴                                                      (2分)

        ②當時,

       ∴                                                 (4分)

        ③當時,

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設為軌跡上任一點,則

                                             (4分)

       化簡得:   為求。                                (6分)

       ⑵設,,

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習冊答案
久久精品免费一区二区视