題目列表(包括答案和解析)
動圓過定點
,且與直線
相切,其中
.設圓心
的軌跡
的程為
(1)求;
(2)曲線上的一定點
(
0) ,方向向量
的直線
(不過P點)與曲線
交與A、B兩點,設直線PA、PB斜率分別為
,
,計算
;
(3)曲線上的兩個定點
、
,分別過點
作傾斜角互補的兩條直線
分別與曲線
交于
兩點,求證直線
的斜率為定值;
動圓經過定點
,且與直線
相切。
(1)求圓心的軌跡
方程;
(2)直線過定點
與曲線
交于
、
兩點:
①若,求直線
的方程;
②若點始終在以
為直徑的圓內,求
的取值范圍。
動圓C的方程為。
(1)若,且直線
與圓C交于A,B兩點,求弦長
;
(2)求動圓圓心C的軌跡方程;
(3)若直線與動圓圓心C的軌跡有公共點,求
的取值范圍。
一、填空題
1. 2.
,
3.
4.2
5.1 6.
7.50
8. 9.-2
10.
11.2 12.
13.2 14.
二、解答題
15[解]:證:設
,連
。
⑴ ∵為菱形, ∴
為
中點,又
為
中點。
∴∥
(5分)
又 ,
∴
∥
(7分)
⑵ ∵為菱形, ∴
,
(9分)
又∵,
∴
(12分)
又 ∴
又
∴
(14分)
16[解]:解:⑴ ∵ , ∴
,∴
(1分)
又
(3分)
∴
∴ 。
(6分)
⑵,
(8分)
∵,∴
,
。
∴
(10分)
(13分)
(當 即
時取“
”)
所以的最大值為
,相應的
(14分)
17.解:⑴直線的斜率
,
中點坐標為
,
∴直線方程為
(4分)
⑵設圓心,則由
在
上得:
①
又直徑,
,
又
∴ ② (7分)
由①②解得或
∴圓心 或
∴圓的方程為
或
(9分)
⑶ ,∴ 當△
面積為
時 ,點
到直線
的距離為
。
(12分)
又圓心到直線
的距離為
,圓
的半徑
且
∴圓上共有兩個點使 △
的面積為
.
(14分)
18[解] (1)乙方的實際年利潤為:
. (5分)
,
當時,
取得最大值.
所以乙方取得最大年利潤的年產量 (噸).…………………8分
(2)設甲方凈收入為元,則
.
將
代入上式,得:
. (13分)
又
令,得
.
當時,
;當
時,
,所以
時,
取得最大值.
因此甲方向乙方要求賠付價格 (元/噸)時,獲最大凈收入. (16分)
19. 解:⑴ 由 得
,令
得
(2分)
∴所求距離的最小值即為到直線
的距離(4分)
(7分)
⑵假設存在正數,令
則
(9分)
由得:
∵當時,
,∴
為減函數;
當時,
,∴
為增函數.
∴
(14分)
∴ ∴
∴的取值范圍為
(16分)
20. 解:⑴由條件得: ∴
(3分)
∵ ∴
∴
為等比數列∴
(6分)
⑵由 得
(8分)
又 ∴
(9分)
⑶∵
(或由即
)
∴為遞增數列。
(11分)
∴從而
(14分)
∴
(16分)
附加題答案
21. (8分)
22. 解:⑴①當時,
∴ (2分)
②當時,
∴
(4分)
③當時,
∴
(6分)
綜上該不等式解集為 (8分)
23. (1); (6分)
(2)AB=
(12分)
24. 解: ⑴設為軌跡上任一點,則
(4分)
化簡得: 為求。
(6分)
⑵設,
,
∵ ∴
(8分)
∴ 或
為求
(12分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com