題目列表(包括答案和解析)
(本小題滿分12分)
班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結果);
(2)隨機抽取8位同學,數學分數依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規定90分(含90分)以上為優秀,記為這8位同學中數學和物理分數均為優秀的人數,求
的分布列和數學期望;
②若這8位同學的數學、物理分數事實上對應下表:
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7[來源:Z#xx#k.Com] | 8 |
數學分數 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分數 | 72 | 77 | 80[來源:學科網] | 84 | 88 | 90 | 93 | 95 |
根據上表數據可知,變量與
之間具有較強的線性相關關系,求出
與
的線性回歸方程(系數精確到0.01).(參考公式:
,其中
,
;參考數據:
,
,
,
,
,
,
)
(本小題滿分12分)
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
|
喜愛打籃球 |
不喜愛打籃球 |
合計 |
男生 |
|
5 |
|
女生 |
10 |
|
[來源:學|科|網] |
合計 |
|
|
50[] |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
(1)請將上面的列聯表補充完整
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,
還喜歡打乒乓球,還喜歡踢足球,現在從喜歡打羽毛球、喜歡打乒乓球、
喜歡踢足球的8位女生中各選出1名進行其他方面的調查,求和
不全被選
中的概率.
下面的臨界值表供參考:
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小題滿分12分)
甲乙兩個學校高三年級分別為1100人,1000人,為了統計兩個學校在地區二?荚嚨臄祵W科目成績,采用分層抽樣抽取了105名學生的成績,并作出了部分頻率分布表如下:(規定考試成績在[120,150]內為優秀)
甲校:
分組 |
|
|
|
|
|
|
|
[140,150] |
頻數 |
2 |
3 |
10 |
15 |
15 |
x |
3 |
1 |
乙校:
分組 |
|
|
|
|
|
|
|
[140,150] |
頻數 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)計算x,y的值,并分別估計兩上學校數學成績的優秀率;
(2)由以上統計數據填寫下面2×2列聯表,并判斷是否有97.5%的把握認為兩個學校的數學成績有差異.
|
甲校 |
乙校 |
總計 |
優秀 |
|
|
|
非優秀 |
|
|
|
總計 |
|
|
|
附:
|
0.10 |
0.025 |
0.010 |
|
2.706 |
5.024 |
6.635 |
(本小題滿分12分)
某校為了探索一種新的教學模式,進行了一項課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班的人數均為50人,一年后對兩班進行測試,成績如下表(總分:150分):
甲班
成績 | ![]() | ![]() | ![]() | ![]() | ![]() |
頻數 | 4 | 20 | 15 | 10 | 1 |
成績 | ![]() | ![]() | ![]() | ![]() | ![]() |
頻數 | 1 | 11 | 23 | 13 | 2 |
| 成績小于100分[來源:學科網ZXXK] | 成績不小于100分 | 合計 |
甲班 | ![]() | 26 | 50 |
乙班 | 12 | ![]() | 50 |
合計 | 36 | 64 | 100 |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841[來源:Z.xx.k.Com] | 5.024 | 6.635 | 7.879 | 10.828 |
(本題滿分15分)
已知函數,
(
),函數
[來源:學.科.網]
(Ⅰ)當時,求函數
的單調區間和最大、最小值;
(Ⅱ)求證:對于任意的,總存在
,使得
是關于
的方程
的解;并就
的取值情況討論這樣的
的個數。
第Ⅰ卷
一、填空題:
1. {1,2,3}; 2.充分非必要;3.; 4.
; 5. 8; 6. (歷史) 5049; (物理)
; 7. 1; 8.
9.;10.
; 11.
; 12.
;13.
;14. 4.
二、解答題:
15. 解:(1)因為,所以
…………(3分)
得 (用輔助角得到
同樣給分) ………(5分)
又,所以
=
……………………………………(7分)
(2)因為 ………………………(9分)
= …………………………………………(11分)
所以當=
時,
的最大值為5+4=9 …………………(13分)
故的最大值為3 ………………………………………(14分)
16. (選歷史方向) 解: (1)表格為:
高 個
非高個
合 計
大 腳
5
2
7
非大腳
1
13
合 計
6
14
…… (3分)
(說明:黑框內的三個數據每個1分,黑框外合計數據有錯誤的暫不扣分)
(2)提出假設H0: 人的腳的大小與身高之間沒有關系. …………………………… (4分)
根據上述列聯表可以求得.…………………… (7分)
當H0成立時,的概率約為0.005,而這里8.802>7.879,
所以我們有99.5%的把握認為: 人的腳的大小與身高之間有關系. ……………… (8分)
(3)
①抽到12號的概率為………………………………… (11分)
②抽到“無效序號(超過20號)”的概率為…………………… (14分)
(選物理方向) 解:(Ⅰ)在給定的直角坐標系下,設最高點為A,入水點為B,
拋物線的解析式為. …………………………… 2′
由題意,知O(0,0),B(2,-10),且頂點A的縱坐標為.…………… 4′
或
……………………………
8′
∵拋物線對稱軸在y軸右側,∴,又∵拋物線開口向下,∴a<0,
從而b>0,故有 ……………………………9′
∴拋物線的解析式為. ……………………………10′
(Ⅱ)當運動員在空中距池邊的水平距離為米時,
即時,
, ……………………………12′
∴此時運動員距水面的高為10-=
<5,因此,此次跳水會失誤.………………14′
17. (1)證明:由直四棱柱,得,
所以是平行四邊形,所以
…………………(3分)
而,
,所以
面
………(4分)
(2)證明:因為, 所以
……(6分)
又因為,且
,所以
………
……(8分)
而,所以
…………………………(9分)
(3)當點為棱
的中點時,平面
平面
…………………(10分)
取DC的中點N,
,連結
交
于
,連結
.
因為N是DC中點,BD=BC,所以;又因為DC是面ABCD與面
的交線,而面ABCD⊥面
,
所以……………(12分)
又可證得,是
的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以OM
平面
,
因為OM?面DMC1,所以平面平面
………………………(14分)
18. 解:(1)因為,所以c=1……………………(2分)
則b=1,即橢圓的標準方程為
…………………………(4分)
(2)因為(1,1),所以
,所以
,所以直線OQ的方程為y=-2x(6分)
又橢圓的左準線方程為x=-2,所以點Q(-2,4) …………………………(7分)
所以,又
,所以
,即
,
故直線與圓
相切……………………………………………………(9分)
(3)當點在圓
上運動時,直線
與圓
保持相切 ………(10分)
證明:設(
),則
,所以
,
,
所以直線OQ的方程為 ……………(12分)
所以點Q(-2,) ………………
(13分)
所以,
又,所以
,即
,故直線
始終與圓
相切……(15分)
19.⑴解:函數的定義域為,
(
)…… (2分)
若,則
,
有單調遞增區間
. ……………… (3分)
若,令
,得
,
當時,
,
當時,
. ……………… (5分)
有單調遞減區間
,單調遞增區間
. ……………… (6分)
⑵解:(i)若,
在
上單調遞增,所以
. ……… (7分)
若,
在
上單調遞減,在
上單調遞增,
所以. ………………
(9分)
若,
在
上單調遞減,所以
.………… (10分)
綜上所述, ………………
(12分)
(ii)令.若
,無解. ………………
(13分)
若,解得
. ……………… (14分)
若,解得
. ………………
(15分)
故的取值范圍為
. ……………… (16分)
20. (1)數表中第行的數依次所組成數列的通項為
,則由題意可得
… (2分)
(其中
為第
行數所組成的數列的公差)
(4分)
(2)
第一行的數依次成等差數列,由(1)知,第2行的數也依次成等差數列,依次類推,可知數表中任一行的數(不少于3個)都依次成等差數列. ……………… (5分)
設第行的數公差為
,則
,則
…………… (6分)
所以
(10 分)
(3)由,可得
所以=
……………… (11分)
令,則
,所以
………… (13分)
要使得,即
,只要
=
,
,
,所以只要
,
即只要,所以可以令
則當時,都有
.
所以適合題設的一個函數為
(16分)
第Ⅱ卷(附加題 共40分)
1. (1)設動點P的坐標為,M的坐標為
,
則即為所求的軌跡方程. …………(6分)
(2)由(1)知P的軌跡是以()為圓心,半徑為
的圓,易得RP的最小值為1
.……(10分)
2. ,|x-a|<l,
,
…………………………………………………5分
=
………………………10分
3. 證明:以為坐標原點
長為單位長度,如圖建立空間直角坐標系,則各點坐標為
.
(1)解:因
所以,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com