題目列表(包括答案和解析)
請考生在第22、23、24題中任選一題做答,如果多做,則按所
做的第一題記分.做答時,用2B鉛筆在答題卡上把所選題目對應的[來源:學科網ZXXK]
題號涂黑.
22.選修4-1:幾何證明選講
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE??BF=BC??BD
23.選修4-4:坐標系與參數方程
在拋物線y2=4a(x+a)(a>0),設有過原點O作一直線分別
交拋物線于A、B兩點,如圖所示,試求|OA|??|OB|的最小值。
24.選修4—5;不等式選講
設|a|<1,函數f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤
選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區域答題。如果多做,則按所做的第一題計分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙
的切線,
為切點,
是⊙
的割線,與⊙
交于
兩點,圓心
在
的內部,點
是
的中點。
(1)證明四點共圓;
(2)求的大小。
23.選修4—4:坐標系與參數方程[來源:學科網ZXXK]
已知直線經過點
,傾斜角
。
(1)寫出直線的參數方程;
(2)設與曲線
相交于兩點
,求點
到
兩點的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式
同解,而
的解集為空集,求實數
的取值范圍。
或
或7 ………………………………14分
16.(本小題滿分14分)
(1)證明:E、P分別為AC、A′C的中點,
EP∥A′A,又A′A
平面AA′B,EP
平面AA′B
∴即EP∥平面A′FB …………………………………………5分
(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC
∴BC⊥A′E,∴BC⊥平面A′EC
BC平面A′BC
∴平面A′BC⊥平面A′EC …………………………………………9分
(3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,
在△A′AC中,EP∥A′A,∴A′A⊥A′C
由(2)知:BC⊥平面A′EC 又A′A平面A′EC
∴BC⊥AA′
∴A′A⊥平面A′BC …………………………………………14分
∴
…………………………………………15分
(本題也可以利用特征三角形中的有關數據直接求得)
18.(本小題滿分15分)
(1)延長BD、CE交于A,則AD=,AE=2
則S△ADE= S△BDE= S△BCE=
∵S△APQ=,∴
∴
…………………………………………7分
(2)
=?
…………………………………………12分
當,
即,
…………………………………………15分
(3)
設上式為 ,假設
取正實數,則
?
當時,
,
遞減;
當,
,
遞增. ……………………………………12分
∴不存在正整數,使得
即
…………………………………………16分
,
顯然成立
……………………………………12分
當時,
,
使不等式
成立的自然數n恰有4個的正整數p值為3
……………………………………………16分
泰州市2008~2009學年度第二學期期初聯考
高三數學試題參考答案
附加題部分
度單位.(1)
,
,由
得
.
所以.
即為圓
的直角坐標方程. ……………………………………3分
同理為圓
的直角坐標方程. ……………………………………6分
(2)由
相減得過交點的直線的直角坐標方程為. …………………………10分
D.證明:(1)因為
所以
…………………………………………4分
(2)∵ …………………………………………6分
同理,,
……………………………………8分
三式相加即得……………………………10分
22.(必做題)(本小題滿分10分)
解:(1)記“恰好選到1個曾經參加過數學研究性學習活動的同學”為事件的, 則其概率為
…………………………………………4分
答:恰好選到1個曾經參加過數學研究性學習活動的同學的概率為
(1)
,
,
,
,
……………………………………3分
(2)平面BDD1的一個法向量為
設平面BFC1的法向量為
∴
取得平面BFC1的一個法向量
∴所求的余弦值為
……………………………………6分
(3)設(
)
,由
得
即,
當
時,
當時,∴
……………………………………10分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com