(Ⅳ) 先證: 查看更多

 

題目列表(包括答案和解析)

先閱讀下列不等式的證法,再解決后面的問題:
已知a1,a2∈R,a1+a2=1,求證a12+a22
1
2

證明:構造函數f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因為對一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,從而得a12+a22
1
2
,
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述結論的推廣式;
(2)參考上述解法,對你推廣的結論加以證明.

查看答案和解析>>

(2012•北京)近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱,為調查居民生活垃圾分類投放情況,先隨機抽取了該市三類垃圾箱總計1000噸生活垃圾,數據統計如下(單位:噸);
“廚余垃圾”箱 “可回收物”箱 “其他垃圾”箱
廚余垃圾 400 100 100
可回收物 30 240 30
其他垃圾 20 20 60
(1)試估計廚余垃圾投放正確的概率;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數據a,b,c的方差s2最大時,寫出a,b,c的值(結論不要求證明),并求此時s2的值.
(求:S2=
1
n
[(x1-
.
x
2
+(x2-
.
x
2
+…+(xn-
.
x
2
],其中
.
x
為數據x1,x2,…,xn的平均數)

查看答案和解析>>

(2012•徐匯區一模)對于數列{xn},從中選取若干項,不改變它們在原來數列中的先后次序,得到的數列稱為是原來數列的一個子數列.某同學在學習了這一個概念之后,打算研究首項為a1,公差為d的無窮等差數列{an}的子數列問題,為此,他取了其中第一項a1,第三項a3和第五項a5
(1)若a1,a3,a5成等比數列,求d的值;
(2)在a1=1,d=3 的無窮等差數列{an}中,是否存在無窮子數列{bn},使得數列(bn)為等比數列?若存在,請給出數列{bn}的通項公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個命題:“對于首項為正整數a,公比為正整數q(q>1)的無窮等比數列{cn},總可以找到一個子數列{bn},使得{dn}構成等差數列”.于是,他在數列{cn}中任取三項ck,cm,cn(k<m<n),由ck+cn與2cm的大小關系去判斷該命題是否正確.他將得到什么結論?

查看答案和解析>>

(2013•徐匯區一模)對于數列{xn},從中選取若干項,不改變它們在原來數列中的先后次序,得到的數列稱為是原來數列的一個子數列.某同學在學習了這一個概念之后,打算研究首項為正整數a,公比為正整數q(q>0)的無窮等比數列{an}的子數列問題.為此,他任取了其中三項ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數列,求k,m,n之間滿足的等量關系;
(2)他猜想:“在上述數列{an}中存在一個子數列{bn}是等差數列”,為此,他研究了ak+an與2am的大小關系,請你根據該同學的研究結果來判斷上述猜想是否正確;
(3)他又想:在首項為正整數a,公差為正整數d的無窮等差數列中是否存在成等比數列的子數列?請你就此問題寫出一個正確命題,并加以證明.

查看答案和解析>>

(2013•揭陽一模)根據公安部最新修訂的《機動車駕駛證申領和使用規定》:每位駕駛證申領者必須通過《科目一》(理論科目)、《綜合科》(駕駛技能加科目一的部分理論)的考試.已知李先生已通過《科目一》的考試,且《科目一》的成績不受《綜合科》的影響,《綜合科》三年內有5次預約考試的機會,一旦某次考試通過,便可領取駕駛證,不再參加以后的考試,否則就一直考到第5次為止.設李先生《綜合科》每次參加考試通過的概率依次為0.5,0.6,0.7,0.8,0.9.
(1)求在三年內李先生參加駕駛證考試次數ξ的分布列和數學期望;
(2)求李先生在三年內領到駕駛證的概率.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视