題目列表(包括答案和解析)
(9分)某網民用電腦上因特網有兩種方案可選:一是在家里上網,費用分為通訊費(即電話費)與網絡維護費兩部分.現有政策規定:通訊費為0.2元/小時,但每月30元封頂(即超過30元則只需交30元),網絡維護費1元/小時,但每月上網不超過10小時則要交10元;二是到附近網吧上網,價格為1.5元/小時.
(1)將該網民在某月內在家上網的費用y(元)表示為時間t(小時)的函數;
(2)試確定在何種情況下,該網民在家上網更便宜?
(本題滿分12分)某網民用電腦上因特網有兩種方案可選:一是在家里上網,費用分為通訊費(即電話費)與網絡維護費兩部分,F有政策規定:通訊費為0.02元/分鐘,但每月30元封頂(即超過30元則只需交30元),網絡維護費1元/小時,但每月上網不超過10小時則要交10元;二是到附近網吧上網,價格為1.5元/小時。
(1)將該網民在某月內在家上網的費用(元)表示為時間
(小時)的函數;
(2)試確定在何種情況下,該網民在家上網更便宜?
已知,函數
(1)當時,求函數
在點(1,
)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區間
上為增函數,則
依題意,只需,即
解得 或
(舍去)
則正實數的取值范圍是(
,
)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com