題目列表(包括答案和解析)
數列的通項公式
(1)求:f(1)、f(2)、f(3)、f(4)的值;
(2)由上述結果推測出計算f(n)的公式,并用數學歸納法加以證明.
設數列的通項公式為
。數列
定義如下:對于正整數m,
是使得不等式
成立的所有n中的最小值。 (1)若
,求b3; (2)若
,求數列
的前2m項和公式;(3)是否存在p和q,使得
?如果存在,求p和q的取值范圍;如果不存在,請說明理由。
設數列的通項公式為
。數列
定義如下:對于正整數m,
是使得不等式
成立的所有n中的最小值。
(1)若,求b3;
(2)若,求數列
的前2m項和公式;
(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。
設數列的通項公式為
。數列
定義如下:對于正整數m,
是使得不等式
成立的所有n中的最小值。 (1)若
,求b3; (2)若
,求數列
的前2m項和公式;(3)是否存在p和q,使得
?如果存在,求p和q的取值范圍;如果不存在,請說明理由。
一、選擇題(本大題共12個小題,每小題5分,共60分)
1―5 CABDC 6―10 DCCBB 11―12AB
二、填空題:
13.9
14.
15.(1,0)
16.420
三、解答題:
17.解:(1)
(2)由(1)知,
18.解: 記“第i個人過關”為事件Ai(i=1,2,3),依題意有
。
(1)設“恰好二人過關”為事件B,則有,
且彼此互斥。
于是
=
(2)設“有人過關”事件G,“無人過關”事件互相獨立,
19.解法:1:(1)
(2)過E作EF⊥PC,垂足為F,連結DF。 (8分)
|