[點評] 本小題考查三角函數中的誘導公式.特殊角三角函數值.兩角差公式.倍角公式.函數的性質等基礎知識.考查基本運算能力. [例5] 如圖.l1.l2.l3是同一平面內的三條平行直線.l1與l2間的距離是1. l2與l3間的距離是2.正三角形ABC的三頂點分別在l1.l2.l3上.則△ABC的邊長是 查看更多

 

題目列表(包括答案和解析)

【解析】本小題考查直線方程的求法。畫草圖,由對稱性可猜想。

事實上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點F滿足此方程,又原點O也滿足此方程,故為所求的直線OF的方程。

答案。

查看答案和解析>>

已知△的內角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數的基本關系等基礎知識,考查運算求解能力。第一問中,得到正弦值,再結合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得

 

查看答案和解析>>

 若圓與圓(a>0)的公共弦的長為,

___________      。

【考點定位】本小題考查圓與圓的位置關系,基礎題。

 

查看答案和解析>>

函數是定義在上的奇函數,且。

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且。

解得

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,。

,………………2分

,又,,

(2)任取,且,

,………………6分

,

,,,,

在(-1,1)上是增函數。…………………………………………8分

(3)單調減區間為…………………………………………10分

當,x=-1時,,當x=1時,

 

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

當且僅當,即時取等號.

故圓面積的最小值

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视