(2)求的值. 解答:(Ⅰ)由余弦定理 查看更多

 

題目列表(包括答案和解析)

已知向量=(),=(,),其中().函數,其圖象的一條對稱軸為

(I)求函數的表達式及單調遞增區間;

(Ⅱ)在△ABC中,ab、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結論,表示出A,結合正弦面積公式和余弦定理求解a的值。

解:因為

由余弦定理得,……11分故

 

查看答案和解析>>

學生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均銳角
-
π
2
<α-β<
π
2

α-β=±
π
3

請判斷上述解答是否正確?若不正確請予以指正.

查看答案和解析>>

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.求的值為( )
A.0
B.-2
C.-1
D.1

查看答案和解析>>

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.求的值為( )
A.0
B.-2
C.-1
D.1

查看答案和解析>>

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.求的值為( )
A.0
B.-2
C.-1
D.1

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视