題目列表(包括答案和解析)
設A是如下形式的2行3列的數表,
a |
b |
c |
d |
e |
f |
滿足性質P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數之和(i=1,2),
為A的第j列各數之和(j=1,2,3)記
為
中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求
的最大值
(3)對所有滿足性質P的2行3列的數表A,求的最大值。
【解析】(1)因為,
,所以
(2),
因為,所以
,
所以
當d=0時,取得最大值1
(3)任給滿足性質P的數表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數換成它的相反數,所得數表仍滿足性質P,并且
,因此,不妨設
,
,
由得定義知,
,
,
,
從而
所以,,由(2)知,存在滿足性質P的數表A使
,故
的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹的邏輯思維能力
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com