題目列表(包括答案和解析)
設函數f(x)=logb(b>0且b≠1),
(1)求f(x)的定義域;
(2)當b>1時,求使f(x)>0的所有x的值。
已知a>0,函數f(x)=ax-bx2,
(1)當b>0時,若對任意x∈R都有f(x)≤1,證明:a≤2;
(2)當b>1時,證明:對任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2;
(3)當0<b≤1時,討論:對任意x∈[0, 1], |f(x)|≤1的充要條件。
已知a>0,函數f(x)=ax-bx2.
(1)當b>0時,若對任意x∈R都有f(x)≤1,證明a≤2;
(2)當b>1時,證明:對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2;
(3)當0<b≤1時,討論:對任意x∈[0,1],|f(x)|≤1的充要條件.
已知a>0,函數f(x)=ax-bx2,
(1)當b>0時,若對任意x∈R都有f(x)≤1,證明:a≤2;
(2)當b>1時,證明:對任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2;
(3)當0≤1時,討論:對任意x∈[0, 1], |f(x)|≤1的充要條件。
(本小題滿分14分) 已知函數f (x)=ex-k-x,其中x∈R. (1)當k=0時,若g(x)= 定義域為R,求實數m的取值范圍;(2)給出定理:若函數f (x)在[a,b]上連續,且f (a)·f (b)<0,則函數y=f (x)在區間(a,b)內有零點,即存在x0∈(a,b),使f (x0)=0;運用此定理,試判斷當k>1時,函數f (x)在(k,2k)內是否存在零點.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com