所以.曲線在點處的切線方程是.整理得 查看更多

 

題目列表(包括答案和解析)

是拋物線上的一點,過點的切線方程的斜率可通過如下方式求得:  在兩邊同時對x求導,得:,所以過的切線的斜率:,試用上述方法求出雙曲線處的切線方程為___________.

 

查看答案和解析>>

是拋物線上的一點,過點的切線方程的斜率可通過如下方式求得: 在兩邊同時對x求導,得:,所以過的切線的斜率:,試用上述方法求出雙曲線處的切線方程為___________.

查看答案和解析>>

已知函數,其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數的單調性;

  (3)若函數上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數上單調遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值,

時由(2)可知處取得最小值,不符合題意.

綜上,函數上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

①函數的零點所在的區間是(2,3);②曲線y=4x-x3在點(-1,-3)處的切線方程是y=x-2;③將函數y=2x+1的圖象按向量a=(1,-1)平移后得到函數y=2x+1的圖象;④函數y=的定義域是(-,-1)∪(1,)⑤>0是、的夾角為銳角的充要條件;以上命題正確的是    .(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

①函數數學公式的零點所在的區間是(2,3);②曲線y=4x-x3在點(-1,-3)處的切線方程是y=x-2;③將函數y=2x+1的圖象按向量a=(1,-1)平移后得到函數y=2x+1的圖象;④函數y=數學公式的定義域是(-數學公式,-1)∪(1,數學公式)⑤數學公式數學公式>0是數學公式、數學公式的夾角為銳角的充要條件;以上命題正確的是________.(注:把你認為正確的命題的序號都填上)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视