題目列表(包括答案和解析)
(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生
(I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統計記錄輸出y的值為i(i=1,2,3)的頻數,以下是甲乙所作頻數統計表的部分數據.
甲的頻數統計圖(部分)
運行次數n |
輸出y的值為1的頻數 |
輸出y的值為2的頻數 |
輸出y的值為3的頻數 |
30 |
14 |
6 |
10 |
… |
… |
… |
… |
2100 |
1027 |
376 |
697 |
乙的頻數統計圖(部分)
運行次數n |
輸出y的值為1的頻數 |
輸出y的值為2的頻數 |
輸出y的值為3的頻數 |
30 |
12 |
11 |
7 |
… |
… |
… |
… |
2100 |
1051 |
696 |
353 |
當n=2100時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷兩位同學中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數ξ的分布列及數學期望.
某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據自己對程序框圖的理解,各自編寫程序重復運行n次后,統計記錄了輸出y的值為i(i=1,2,3)的頻數.以下是甲、乙所作頻數統計表的部分數據.
甲的頻數統計表(部分)
運行次數n | 輸出y的值 為1的頻數 | 輸出y的值 為2的頻數 | 輸出y的值 為3的頻數 |
30 | 14 | 6 | 10 |
… | … | … | … |
2 100 | 1 027 | 376 | 697 |
運行次數n | 輸出y的值 為1的頻數 | 輸出y的值 為2的頻數 | 輸出y的值 為3的頻數 |
30 | 12 | 11 | 7 |
… | … | … | … |
2 100 | 1 051 | 696 | 353 |
(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生
(I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統計記錄輸出y的值為i(i=1,2,3)的頻數,以下是甲乙所作頻數統計表的部分數據.
甲的頻數統計圖(部分)
運行次數n | 輸出y的值為1的頻數 | 輸出y的值為2的頻數 | 輸出y的值為3的頻數 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
運行次數n | 輸出y的值為1的頻數 | 輸出y的值為2的頻數 | 輸出y的值為3的頻數 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
一、選擇題
1. B 2. C 3. A 4. D 5. C 6. D 7. B 8. C 9. A 10. D
二、填空題
11. 192 12. 286 13. 14.
15.
840 16.
三、解答題
17. (本題12分)
解:(I)
2分
(II)
8分
由已知條件
根據正弦定理,得 10分
12分
18. (本題12分)
解:(I)在7人中選出3人,總的結果數是種, (2分)
記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:
①被選中的是1名女生,2名男生的結果數是,
②被選中的是3名男生的結果數是 4分
至多選中1名女生的概率為
6分
(II)由題意知隨機變量可能的取值為:0,1,2,3,則有
,
8分
∴
0
1
2
3
P
10分
∴的數學期望
12分
19. (本題12分)
解:(I)連接PO,以OA,OB,OP所在的直線為x軸,y軸,z軸
建立如圖所示的空間直角坐標系。 2分
∵正四棱錐的底面邊長和側棱長都是2。
∴
∴
(II)∵
∴是平面PDB的一個法向量。 8分
由(I)得
設平面BMP的一個法向量為
則由,得
,不妨設c=1
得平面BMP的一個法向量為 10分
∵二面角M―PB―D小于90°
∴二面角M―PB―D的余弦值為 12分
20. (本題12分)
解:(I)由已知得
2分
由,得 4分
即。解得k=50或
(舍去)
6分
(II)由,得
8分
9分
是等差數列
則
11分
12分
21. (本題14分)
解:(I)依題意得
2分
把
解得
∴橢圓的方程為 4分
(II)由(I)得,設
,如圖所示,
∵M點在橢圓上,
∴ ①
∵M點異于頂點A、B,
∴
由P、A、M三點共線,可得,
從而 7分
∴ ② 8分
將①式代入②式化簡得 10分
∵
∴ 12分
于是∠MBP為銳角,從而∠MBN為鈍角,
∴點B在以MN為直徑的圓內。 14分
22. (本題14分)
解:(I),
令 2分
而
∴當 4分
(II)設函數g(x)在[0,2]上的值域是A,
∵若對任意
∴ 6分
①當,
∴函數上單調遞減。
∵
∴; 8分
②當
令(舍去) 9分
(i)當時,
的變化如下表:
(ii)當
∴函數g(x)在(0,2)上單調遞減。
綜上可知,實數a的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com