題目列表(包括答案和解析)
已知向量=(
),
=(
,
),其中(
).函數
,其圖象的一條對稱軸為
.
(I)求函數的表達式及單調遞增區間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=
,求a的值.
【解析】第一問利用向量的數量積公式表示出,然后利用
得到
,從而得打解析式。第二問中,利用第一問的結論,表示出A,結合正弦面積公式和余弦定理求解a的值。
解:因為
由余弦定理得,……11分故
如圖,在三棱錐中,平面
平面
,
,
,
,
為
中點.(Ⅰ)求點B到平面
的距離;(Ⅱ)求二面角
的余弦值.
【解析】第一問中利用因為,
為
中點,所以
而平面平面
,所以
平面
,再由題設條件知道可以分別以
、
、
為
,
,
軸建立直角坐標系得
,
,
,
,
,
,
故平面的法向量
而
,故點B到平面
的距離
第二問中,由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,
為
中點,所以
而平面平面
,所以
平面
,
再由題設條件知道可以分別以、
、
為
,
,
軸建立直角坐標系,得
,
,
,
,
,
,故平面
的法向量
而,故點B到平面
的距離
(Ⅱ)由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com