由 F+Q, 或 查看更多

 

題目列表(包括答案和解析)

解:(1)由拋物線C1得頂點P的坐標為(2,5)………….1分

∵點A(-1,0)在拋物線C1上∴.………………2分

(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..

∵點P、M關于點A成中心對稱,

∴PM過點A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴頂點M的坐標為(,5).………………………3分

∵拋物線C2與C1關于x軸對稱,拋物線C3由C2平移得到

∴拋物線C3的表達式.  …………4分

(3)∵拋物線C4由C1繞x軸上的點Q旋轉180°得到

∴頂點N、P關于點Q成中心對稱.

 由(2)得點N的縱坐標為5.

設點N坐標為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.

∵旋轉中心Q在x軸上,

∴EF=AB=2AH=6.

 ∴EG=3,點E坐標為(,0),H坐標為(2,0),R坐標為(m,-5).

根據勾股定理,得

     

  

       

①當∠PNE=90º時,PN2+ NE2=PE2,

解得m=,∴N點坐標為(,5)

②當∠PEN=90º時,PE2+ NE2=PN2,

解得m=,∴N點坐標為(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

綜上所得,當N點坐標為(,5)或(,5)時,以點P、N、E為頂點的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视