從表可以看出.當t=0時.y=10.且函數的最小正周期∴b=10.由得.由時得∴,∴的近似表達式為. 查看更多

 

題目列表(包括答案和解析)

16.(2)解(1)當a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時函數g(x)只有兩個零點,所以(1)不對

(2)若a=-1,-2<b<0,則把函數f(x)作關于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點

(3)當a<0時, y=af(x)根據定義可斷定是奇函數,如果b≠0,把奇函數y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關于原點對稱了,肯定不是奇函數;當b=0時才是奇函數,所以(3)不對。所以正確的只有(2)

為了考察高中生學習語文與數學之間的關系,在某中學學生中隨機地抽取了610名學生得到如下列表:

 語文

數學

及格

不及格

總計 

及格

310

142

452

不及格

94

64

158

總計

404

206

610

 由表中數據計算及的觀測值問在多大程度上可以認為高中生的語文與數學成績之間有關系?為什么?

查看答案和解析>>

若函數f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數y=f(x)的圖象關于點(a,b)對稱.

(1)已知函數f(x)=的圖象關于點(0,1)對稱,求實數m的值;

(2)已知函數g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數g(x)在(-∞,0)上的解析式;

(3)在(1)(2)的條件下,當t>0時,若對任意實數x∈(-∞,0),恒有g(x)<f(t)成立,求實數a的取值范圍.

 

查看答案和解析>>

已知函數f(x)=ex-
1
ex
,g(x)=ex+
1
ex
,動直線x=t分別與函數y=f(x)、y=g(x)的圖象分別交于點A(t,f(t))、B(t,g(t)),在點A處作函數y=f(x)的圖象的切線,記為直線l1,在點B處作函數y=g(x)的圖象的切線,記為直線l2
(Ⅰ)證明:不論t取何實數值,直線l1與l2恒相交;
(Ⅱ)若直線l1與l2相交于點P,試求點P到直線AB的距離;
(Ⅲ)當t<0時,試討論△PAB何時為銳角三角形?直角三角形?鈍角三角形?

查看答案和解析>>

已知函數f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)當t=1時,求函數f(x)在區間[-2,0]上的最大值和最小值;
(Ⅱ)當t>0時,求f(x)的單調遞減區間.

查看答案和解析>>

若函數f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數y=f(x)的圖象關于點(a,b)對稱.
(Ⅰ)已知函數f(x)=
x2+mx+mx
的圖象關于點(0,1)對稱,求實數m的值;
(Ⅱ)已知函數g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的條件下,當t>0時,若對任意實數x∈(-∞,0),恒有g(x)<f(t)成立,求實數a的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视