∴當A-=0.即A= 時.的最大值為-------------- 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內部,則z=-x+y的取值范圍是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的區域如圖,由圖象可知當直線經過點B時,截距最大,此時,當直線經過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設,則,解得,,因為頂點C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

 

查看答案和解析>>

因客流量臨時增大,某鞋店擬用一個高為50 cm(即EF=50 cm)的平面鏡自制一個豎直擺放的簡易鞋鏡.根據經驗,一般顧客AB的眼睛B到地面的距離x(cm)在區間[140,180]內.設支架FG高為h(0<h<90)cm,AG=100 cm,顧客可視的鏡像范圍為CD(如圖所示),記CD的長度為y(y=GD-GC).

(1)當h=40 cm時,試求y關于x的函數關系式和y的最大值;

(2)當顧客的鞋A在鏡中的像A1滿足不等關系GC<GA1≤GD(不計鞋長)時,稱顧客可在鏡中看到自己的鞋,若一般顧客都能在鏡中看到自己的鞋,試求h的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视