題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
2 |
3 |
3 |
4 |
已知數列是首項為
的等比數列,且滿足
.
(1) 求常數的值和數列
的通項公式;
(2) 若抽去數列中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數列
,試寫出數列
的通項公式;
(3) 在(2)的條件下,設數列的前
項和為
.是否存在正整數
,使得
?若存在,試求所有滿足條件的正整數
的值;若不存在,請說明理由.
【解析】第一問中解:由得
,,
又因為存在常數p使得數列為等比數列,
則即
,所以p=1
故數列為首項是2,公比為2的等比數列,即
.
此時也滿足,則所求常數
的值為1且
第二問中,解:由等比數列的性質得:
(i)當時,
;
(ii) 當時,
,
所以
第三問假設存在正整數n滿足條件,則,
則(i)當時,
,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com