題目列表(包括答案和解析)
已知函數
(Ⅰ)求函數的最小正周期;
(Ⅱ)求函數在區間
上的最大值和最小值.
【解析】(1)
所以,
的最小正周期
(2)因為在區間
上是增函數,在區間
上是減函數,
又,
,
,
故函數在區間
上的最大值為
,最小值為-1.
函數在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式
(2)函數的圖象經過怎樣的變換可得到
的圖象?
(3)若函數滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用
又因
又
函數
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,可得結論。
解:(1)
又因
又
函數
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,
故所有實數之和為
|
9 |
5 |
411 |
68 |
137 |
20 |
【答案】
【解析】設,有幾何意義知
的最小值為
, 又因為存在實數x滿足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范圍是
.故答案為:
.
已知函數,
.
(Ⅰ)若函數依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數,使對任意的
,不等式
恒成立.求正整數
的最大值.
【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。
第二問中,利用存在實數,使對任意的
,不等式
恒成立轉化為
,恒成立,分離參數法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉化為存在實數,使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設,則.
設,則
,因為
,有
.
故在區間
上是減函數。又
故存在,使得
.
當時,有
,當
時,有
.
從而在區間
上遞增,在區間
上遞減.
又[來源:]
所以當時,恒有
;當
時,恒有
;
故使命題成立的正整數m的最大值為5
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com