題目列表(包括答案和解析)
學校要用三輛車從北湖校區把教師接到文廟校區,已知從北湖校區到文廟校區有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為
;汽車走公路②堵車的概率為
,不堵車的概率為
,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為
,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數
的分布列和數學期望。
【解析】第一問中,由已知條件結合n此獨立重復試驗的概率公式可知,得
第二問中可能的取值為0,1,2,3
,
,
從而得到分布列和期望值
解:(I)由已知條件得 ,即
,則
的值為
。
(Ⅱ)可能的取值為0,1,2,3
,
,
的分布列為:(1分)
|
0 |
1 |
2 |
3 |
|
|
|
|
|
所以
若(x-i)i=y+2i,x,y∈R,則復數x+yi=________.
解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴x+yi=2+i.
C
解析:顯然q≠1.由已知,整理得q=3,又
∴,
=3. ∴
C
解析:顯然q≠1.由已知,整理得q=3,又
∴,
=3. ∴
設函數,其中
為自然對數的底數.
(1)求函數的單調區間;
(2)記曲線在點
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知,所以
,
由,得
,
所以,在區間
上,
,函數
在區間
上單調遞減;
在區間
上,
,函數
在區間
上單調遞增;
第二問中,因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
解:(Ⅰ)由已知,所以
,
由
,得
, 所以,在區間
上,
,函數
在區間
上單調遞減;
在區間上,
,函數
在區間
上單調遞增;
即函數的單調遞減區間為
,單調遞增區間為
.
(Ⅱ)因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
所以,的最大值為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com