(2)對稱性:對于.若.則有, 查看更多

 

題目列表(包括答案和解析)

對于兩個定義域相同的函數f(x),g(x),若存在實數m、n使h(x)=mf(x)+ng(x),則稱函數h(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)試利用“基函數f(x)=log4(4+1)、g(x)=x-1”生成一個函數h(x),使之滿足下列件:①是偶函數;②有最小值1;求函數h(x)的解析式并進一步研究該函數的單調性(無需證明).

查看答案和解析>>

對于定義域為的函數,若有常數M,使得對任意的,存在唯一的滿足等式,則稱M為函數f (x)的“均值”.
(1)判斷1是否為函數的“均值”,請說明理由;
(2)若函數為常數)存在“均值”,求實數a的取值范圍;
(3)若函數是單調函數,且其值域為區間I.試探究函數的“均值”情況(是否存在、個數、大小等)與區間I之間的關系,寫出你的結論(不必證明).
說明:對于(3),將根據結論的完整性與一般性程度給予不同的評分

查看答案和解析>>

對于兩個定義域相同的函數f(x),g(x),若存在實數m、n使h(x)=mf(x)+ng(x),則稱函數h(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)試利用“基函數f(x)=log4(4+1)、g(x)=x-1”生成一個函數h(x),使之滿足下列件:①是偶函數;②有最小值1;求函數h(x)的解析式并進一步研究該函數的單調性(無需證明).

查看答案和解析>>

對于兩個定義域相同的函數f(x),g(x),若存在實數m、n使h(x)=mf(x)+ng(x),則稱函數h(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)試利用“基函數f(x)=log4(4+1)、g(x)=x-1”生成一個函數h(x),使之滿足下列件:①是偶函數;②有最小值1;求函數h(x)的解析式并進一步研究該函數的單調性(無需證明).

查看答案和解析>>

對于兩個定義域相同的函數f(x),g(x),若存在實數m、n使h(x)=mf(x)+ng(x),則稱函數h(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)試利用“基函數f(x)=log4(4+1)、g(x)=x-1”生成一個函數h(x),使之滿足下列件:①是偶函數;②有最小值1;求函數h(x)的解析式并進一步研究該函數的單調性(無需證明).

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视