2.第Ⅱ卷所有題目的答案考生需用黑色簽字筆答在“數學 答題卡指定的位置上. 查看更多

 

題目列表(包括答案和解析)

每小題選出答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號,不能答在試題卷上。

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,選出符合題目要求的一項.

1.設全集,,,則=

(A)          (B)      (C)       (D)

2.已知圓的方程為,那么下列直線中經過圓心的直線方程為

(A)                  (B)

(C)                  (D)

查看答案和解析>>

選擇題每小題選出答案后,用2B鉛筆將答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號,答在試題卷上無效。

查看答案和解析>>

(08年山東卷)(本小題滿分12分)

將數列中的所有項按每一行比上一行多一項的規則排成如下數表:

 

    

      

記表中的第一列數構成的數列為,為數列的前項和,且滿足

(Ⅰ)證明數列成等差數列,并求數列的通項公式;

(Ⅱ)上表中,若從第三行起,第一行中的數按從左到右的順序均構成等比數列,且公比為同一個正數.當時,求上表中第行所有項的和.

查看答案和解析>>

(2013•汕尾二模)同樣規格的黑、白兩色正方形瓷磚鋪設的若干圖案,則按此規律第23個圖案中需用黑色瓷磚
100
100
塊.

查看答案和解析>>

某中學高三(1)班共有50名學生,他們每天自主學習的時間在180到330分鐘之間,將全班學生的自主學習時間作分組統計,得其頻率分布如下表所示:
組序 分組 頻數 頻率
第一組 [180,210) 5 0.1
第二組 [210,240) 10 0.2
第三組 [240,270) 12 0.24
第四組 [270,300) a b
第五組 [300,330) 6 c
(1)求表中的a、b、c的值;
(2)某課題小組為了研究自主學習時間與成績的相關性,需用分層抽樣方法,從這50名學生中隨機抽取20名作統計分析,求在第二組學生中應抽取多少人?
(3)已知第一組學生中有3名男生和2名女生,從這5名學生中隨機抽取2人,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.    15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數列的公差為d,等比數列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

∵EF為△A­BC1的中位線,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1,

而A1C1B1⊥面ACC1A1,

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1,

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵,

∴A1M⊥平面AFB1.…………………………12分

20.(本小題滿分12分)

解:(1)先后兩次拋擲一枚骰子,將得到的點數分別為a,b,

則事件總數為6×6=36…………2分

當a=1時,b=1,2,3,4

a=2時,b=1,2,3

a=3時,b=1,2

a=4,b=1

共有(1,1)(1,2)……

(4,1)10種情況…………6分

…………7分

(2)相切的充要條件是

滿足條件的情況只有兩種情況…………10分

……12分

21.(本小題滿分12分)

解:(1)設

,

,

…………………………3分

,這就是軌跡E的方程.……………………4分

(2)當時,軌跡為橢圓,方程為①…………5分

設直線PD的方程為

代入①,并整理,得

   ②

由題意,必有,故方程②有兩上不等實根.

設點

由②知,………………7分

直線QF的方程為

時,令,

代入

整理得,

再將代入,

計算,得x=1,即直線QF過定點(1,0)

當k=0時,(1,0)點……………………12分

22.(本小題滿分14分)

解:(1)當a=0,b=3時,

,解得

x變化時,變化狀態如下表:

0

(0,2)

2

+

0

-

0

+

0

-4

從上表可知=

……………………5分

(2)當a=0時,≥在恒成立,

在在恒成立,……………………………7分

d則

x>1時,>0,

是增函數,

b≤1.…………………………………………………………9分

(Ⅲ)∵ ,∴?=0,

,∴

由題知,的兩根,

>0………………………11分

則①式可化為

………………………………………………12分

當且僅當,即時取“=”.

的取值范圍是 .……………………………………14分

 

 

 

久久精品免费一区二区视