已知函數 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數m的取值范圍為
 

查看答案和解析>>

已知函數f(x)是定義在實數集R上的不恒為零的偶函數,且對任意實數x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區間[2,3]上有最大值4,最小值1,設f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數解,求實數k的范圍.

查看答案和解析>>

8、已知函數y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數y=f(x)與y=log5x的圖象的交點個數為( 。

查看答案和解析>>

已知函數f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.    15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數列的公差為d,等比數列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

∵EF為△A­BC1的中位線,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1,

而A1C1B1⊥面ACC1A1,

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵

∴A1M⊥平面AFB1.…………………………12分

20.(本小題滿分12分)

解:(1)先后兩次拋擲一枚骰子,將得到的點數分別為a,b,

則事件總數為6×6=36…………2分

當a=1時,b=1,2,3,4

a=2時,b=1,2,3

a=3時,b=1,2

a=4,b=1

共有(1,1)(1,2)……

(4,1)10種情況…………6分

…………7分

(2)相切的充要條件是

滿足條件的情況只有兩種情況…………10分

……12分

21.(本小題滿分12分)

解:(1)設

,

,

…………………………3分

,這就是軌跡E的方程.……………………4分

(2)當時,軌跡為橢圓,方程為①…………5分

設直線PD的方程為

代入①,并整理,得

   ②

由題意,必有,故方程②有兩上不等實根.

設點

由②知,………………7分

直線QF的方程為

時,令

代入

整理得,

再將代入,

計算,得x=1,即直線QF過定點(1,0)

當k=0時,(1,0)點……………………12分

22.(本小題滿分14分)

解:(1)當a=0,b=3時,

,解得

x變化時,變化狀態如下表:

0

(0,2)

2

+

0

-

0

+

0

-4

從上表可知=

……………………5分

(2)當a=0時,≥在恒成立,

在在恒成立,……………………………7分

d則

x>1時,>0,

是增函數,

b≤1.…………………………………………………………9分

(Ⅲ)∵ ,∴?=0,

,∴

由題知的兩根,

>0………………………11分

則①式可化為

………………………………………………12分

當且僅當,即時取“=”.

的取值范圍是 .……………………………………14分

 

 

 

久久精品免费一区二区视