解得n=3.即盒中有“會徽卡 3張.-------------------4分(2)由題意知.甲最多可能摸三次. 查看更多

 

題目列表(包括答案和解析)

某港口的水深(米)是時間,單位:小時)的函數,下面是每天時間與水深的關系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

經過長期觀測, 可近似的看成是函數,(本小題滿分14分)

(1)根據以上數據,求出的解析式。

(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?

【解析】第一問由表中數據可以看到:水深最大值為13,最小值為7,,

∴A+b=13,   -A+b=7   解得  A=3,  b=10

第二問要想船舶安全,必須深度,即

       

解得: 得到結論。

 

查看答案和解析>>

已知函數。

(1)求函數的最小正周期和最大值;

(2)求函數的增區間;

(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?

【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為,最大值為

第二問中,函數的單調區間與函數的單調區間相同。故當,解得x的范圍即為所求的區間。

第三問中,利用圖像將的圖象先向右平移個單位長度,再把橫坐標縮短為原來的 (縱坐標不變),然后把縱坐標伸長為原來的倍(橫坐標不變),再向上平移1個單位即可。

解:(1)函數的最小正周期為,最大值為

(2)函數的單調區間與函數的單調區間相同。

 

所求的增區間為,

所求的減區間為

(3)將的圖象先向右平移個單位長度,再把橫坐標縮短為原來的 (縱坐標不變),然后把縱坐標伸長為原來的倍(橫坐標不變),再向上平移1個單位即可。

 

查看答案和解析>>

在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數列{cn}滿足,求{cn}的前n項和Tn.

【解析】本試題主要是考查了等比數列的通項公式和求和的運用。第一問中,利用等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項求和得到Tn.

解: (Ⅰ) 設:{an}的公差為d,

因為解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因為……………8分

 

查看答案和解析>>

是直角坐標系中,x軸、y軸正方向上的單位向量,設  

(1)若(,求.

(2)若時,求的夾角的余弦值.

(3)是否存在實數,使,若存在求出的值,不存在說明理由.

【解析】第一問中,利用向量的數量積為0,解得為m=-2

第二問中,利用時,結合向量的夾角的余弦值公式解得

第三問中,利用向量共線,求解得到m不存在。

(1)因為設是直角坐標系中,x軸、y軸正方向上的單位向量,設  

(2)因為

(3)假設存在實數,使,則有

因此不存在;

 

查看答案和解析>>

盒中有6個小球,3個白球,記為a1,a2,a3,2個紅球,記為b1,b2,1個黑球,記為c1,除了顏色和編號外,球沒有任何區別.
(1) 求從盒中取一球是紅球的概率;
(2) 從盒中取一球,記下顏色后放回,再取一球,記下顏色,若取白球得1分,取紅球得2分,取黑球得3分,求兩次取球得分之和為5分的概率.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视