∴ ..即..∴ xAxB=-3yAyB. 查看更多

 

題目列表(包括答案和解析)

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,則稱f(x)在D上為上凸函數.以下四個函數在(0,
π
2
)
上不是上凸函數的是( 。

查看答案和解析>>

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f′(x)=(f′(x))′.若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數.以下四個函數在(0,
π2
)上不是凸函數的是
 
.(把你認為正確的序號都填上)
①f(x)=sin x+cos x;
②f(x)=ln x-2x;
③f(x)=-x3+2x-1;
④f(x)=xex

查看答案和解析>>

定義:設函數y=f(x)在(a,b)內可導,f'(x)為f(x)的導數,f''(x)為f'(x)的導數即f(x)的二階導數,若函數y=f(x) 在(a,b)內的二階導數恒大于等于0,則稱函數y=f(x)是(a,b)內的下凸函數(有時亦稱為凹函數).已知函數f(x)=xlnx
(1)證明函數f(x)=xlnx是定義域內的下凸函數,并在所給直角坐標系中畫出函數f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據所畫下凸函數f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數時,定義函數N (n)表示n的最大奇因數.如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f(x)=(f′(x))′,若f(x)<0在D上恒成立,則稱f(x)在D上為凸函數.對于給出的四個函數:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四個函數在(0,
π2
)
上是凸函數的是
①②③
①②③
(請把所有正確的序號均填上)

查看答案和解析>>

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f″(x)=[(f′(x)]′.若f(x)>0在D上恒成立,則稱f(x)在D上為凹函數.以下四個函數在(0,
π
2
)
上不是 凹函數的是( 。
A、f(x)=1-sinx
B、f(x)=ex-2x
C、f(x)=x3-x2-1
D、f(x)=-xe-x

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视