數 . 都有 成立.則 (A)是奇函數.但不是偶函數 (B)是偶函數.但不是奇函數(C)既是奇函數.又是偶函數 (D)既不是奇函數.又不是偶函數 第Ⅱ卷注意事項: 查看更多

 

題目列表(包括答案和解析)

設奇函數f(x)在[-1,1]上是增函數,且f(-1)=-1,若函數f(x)≤t2-2at+1對所有的x∈[-1,1]都成立,則當a∈[-1,1]時,t的取值范圍是(  )
A、-2≤t≤2
B、-
1
2
≤t≤
1
2
C、t≥2或t≤-2或t=0
D、t≥
1
2
或t≤-
1
2
或t=0

查看答案和解析>>

設函數y=f(x)的定義域為R,若存在常數M>0,使|f(x)≤M|x|對一切實數x都成立,則稱f(x)是“受局限函數”,則下列函數是“受局限函數”的為( 。
A、f(x)=2
B、f(x)=x2
C、f(x)=
x3,x≤0
f(x-1),x>0
D、f(x)是定義在R上的奇函數,且滿足對一切實數x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|成立

查看答案和解析>>

已知函數y=f(x)是定義在R上的奇函數,對?x∈R都有f(x-1)=f(x+1)成立,當x∈(0,1]且x1≠x2時,有
f(x2)-f(x1)
x2-x1
<0.給出下列命題:
(1)f(1)=0
(2)f(x)在[-2,2]上有5個零點    
(3)f(2014)=0             
(4)直線x=1是函數y=f(x)圖象的一條對稱軸
則正確命題個數是(  )
A、1B、2C、3D、4

查看答案和解析>>

(08年威海市模擬理)定義域為的函數不恒為零,且對于定義域內的任意實數x、y都有成立,則                                               (    )

    A.是奇函數,但不是偶函數           B.是偶函數,但不是奇函數

    C.既是奇函數,又是偶函數           D.既不是奇函數,又不是偶函數

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A A

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小題滿分12分)

解:以A點為原點,AB為軸,AD為軸,AD

軸的空間直角坐標系,如圖所示.則依題意可知相

關各點的坐標分別是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N(,,).                                  2分

   ∴ (0,,),,0,0),,,).    4分

   ∴ ,.∴

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)設平面NBC的法向量為,),則.且又易知 ,

   ∴   即    ∴

   令,則,0,).                                           9分

   顯然,(0,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小題滿分12分)

解:(Ⅰ)由題意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上問知 ,即是關于的三次函數,設

,則

,解得  或 (不合題意,舍去).

顯然當  時,;當  時,

∴ 當年產量   時,隨機變量  的期望  取得最大值.              12分

(20)(本小題滿分12分)

解:(Ⅰ)設,)是函數 的圖象上任意一點,則容易求得點關于直線  的對稱點為),依題意點)在的圖象上,

. ∴ .            2分

 的一個極值點,∴ ,解得

∴ 函數  的表達式是 ).            4分

∵ 函數  的定義域為(), ∴  只有一個極值點,且顯然當

時,;當時,

∴ 函數  的單調遞增區間是;單調遞減區間是.           6分

(Ⅱ)由 ,

,∴      9分

 在 時恒成立.

∴ 只需求出  在   時的最大值和  在

 時的最小值,即可求得  的取值范圍.

(當  時);

(當  時).

∴   的取值范圍是 .                                         12分

 

(21)(本小題滿分12分)

解:(Ⅰ)∵ ,

設O關于直線

對稱點為的橫坐標為

又易知直線  解得線段的中點坐標

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設直線AN的方程為 ,代入 并整理得:. 

設點,,則

由韋達定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點的橫坐標

,代入,并整理得 .   10分

再將韋達定理的結果代入,并整理可得

∴ 直線ME與軸相交于定點(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ ,,且 ,N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,,……,,

將這個同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步練習冊答案
久久精品免费一区二区视