題目列表(包括答案和解析)
如圖,在四棱錐中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點.
(I)求證:平面
;
(II)求證:;
(III)設PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因為,
,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是
的中點,
,
. …4分
(Ⅱ)證明:四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=
,PA=2,E是PC上的一點,PE=2EC。
(I)
證明PC平面BED;
(II) 設二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關于線面垂直的證明以及線面角的求解的運用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應的垂直關系和長度,并加以證明和求解。
解法一:因為底面ABCD為菱形,所以BDAC,又
【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側面垂直于底面的四棱錐問題,那么創新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。
如圖,在三棱柱中,
側面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線與
的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,、
分別為Y,Z軸建立空間直角坐標系.由于,
在三棱柱中有
,
設
又側面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有故二面角
的平面角
的大小為向量
與
的夾角.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com