解得:.∴. 11分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:   

 
 
60分以下
 
61-70分
 
71-80分
 
81-90分
 
91-100分
 
甲班(人數)
 
3
 
6
 
11
 
18
 
12
 
乙班(人數)
 
4
 
8
 
13
 
15
 
10
 
   現規定平均成績在80分以上(不含80分)的為優秀.
(Ⅰ)試分別估計兩個班級的優秀率;
(Ⅱ)由以上統計數據填寫下面2×2列聯表,并問是否有75%的把握認為“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”有幫助.    
 
 
優秀人數
 
非優秀人數
 
合計
 
甲班
 
 
 
 
 
 
 
乙班
 
 
 
 
 
 
 
合計
 
 
 
 
 
 
 

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數為11.
(1)求x2的系數的最小值;
(2)當x2的系數取得最小值時,求f (x)展開式中x的奇次冪項的系數之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數取最小值22,此時n=3.
(2)由(1)知,當x2的系數取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數之和為30.

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(mn∈N*)的展開式中x的系數為11.
(1)求x2的系數的最小值;
(2)當x2的系數取得最小值時,求f (x)展開式中x的奇次冪項的系數之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數取最小值22,此時n=3.
(2)由(1)知,當x2的系數取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533,
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數之和為30.

查看答案和解析>>

小王經營一家面包店,每天從生產商處訂購一種品牌現烤面包出售.已知每賣出一個現烤面包可獲利10元,若當天賣不完,則未賣出的現烤面包因過期每個虧損5元.經統計,得到在某月(30天)中,小王每天售出的現烤面包個數n及天數如下表:
售出個數n 10 11 12 13 14 15
天數 3 3 3 6 9 6
試依據以頻率估計概率的統計思想,解答下列問題:
(Ⅰ)計算小王某天售出該現烤面包超過13個的概率;
(Ⅱ)若在今后的連續5天中,售出該現烤面包超過13個的天數大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.
(Ⅲ)若小王每天訂購14個該現烤面包,求其一天出售該現烤面包所獲利潤的分布列和數學期望.

查看答案和解析>>

小王經營一家面包店,每天從生產商處訂購一種品牌現烤面包出售.已知每賣出一個現烤面包可獲利10元,若當天賣不完,則未賣出的現烤面包因過期每個虧損5元.經統計,得到在某月(30天)中,小王每天售出的現烤面包個數n及天數如下表:
售出個數n 10 11 12 13 14 15
天數 3 3 3 6 9 6
試依據以頻率估計概率的統計思想,解答下列問題:
(Ⅰ)計算小王某天售出該現烤面包超過13個的概率;
(Ⅱ)若在今后的連續5天中,售出該現烤面包超過13個的天數大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.
(Ⅲ)若小王每天訂購14個該現烤面包,求其一天出售該現烤面包所獲利潤的分布列和數學期望.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视